Summary

原发性小鼠视网膜色素上皮细胞的有效解剖与培养

Published: February 10, 2021
doi:

Summary

该协议最初由费尔南德斯-戈迪诺等人于2016年1月报告,描述了一种有效分离和培养小鼠RPE细胞的方法,该细胞在一周内在Transwell板上形成功能和极化的RPE单层。手术大约需要3个小时。

Abstract

眼疾影响全球数百万人,但人体组织的有限可用性阻碍了他们的研究。小鼠模型是了解眼科疾病病理生理学的有力工具,因为它们与人体解剖学和生理学相似。视网膜色素上皮(RPE)的改变,包括形态和功能的变化,是许多眼部疾病共有的共同特征。然而,成功隔离和培养原鼠RPE细胞是非常具有挑战性的。本文是费尔南德斯-戈迪诺等人之前在 2016 年发布的协议的更新视听版本,旨在有效隔离和培养主要鼠标 RPE 细胞。这种方法具有高度可重复性,并导致高度极化和色素化的 RPE 单层的坚固培养物,可在 Transwells 上保持数周。该模型为研究眼部疾病背后的分子和细胞机制开辟了新的途径。此外,它提供了一个平台,用于测试治疗方法,可用于治疗重要的眼部疾病与未满足的医疗需求,包括遗传性视网膜疾病和黄斑变性。

Introduction

该协议最初由费尔南德斯-戈迪诺等人于20161月报告,描述了一种有效隔离和培养小鼠视网膜色素上皮(RPE)细胞的方法,该细胞在一周内在Transwell板块上形成功能性和极性RPE单层。RPE 是位于神经视网膜和布鲁赫膜之间的眼睛中的单层。这一层由高度极化和色素化的上皮细胞组成,由紧密的结点连接,呈现出类似于蜂巢2的六边形形状。尽管这种明显的组织学简单,RPE执行各种功能的关键视网膜和正常的视觉周期2,3,4。RPE单层的主要功能包括光吸收、光感受器的滋养和更新、代谢端产品的去除、亚视网膜空间中的离子平衡控制以及血视网膜屏障2、3的维护。RPE在眼睛5、6、7、8、9、10、11的局部调节中也起着重要的作用。RPE的退化和/或功能障碍是许多眼部疾病的共同特征,如视网膜炎色素沉着症,勒伯先天性动脉瘤,白化病,糖尿病视网膜病变,和黄斑变性12,13,14,15。不幸的是,人体组织的可用性是有限的。鉴于小鼠与人类高度保存的遗传同源性,小鼠模型是研究眼部疾病16、17、18、19的合适和有用的工具。此外,使用培养的原发性RPE细胞提供的优势,如基因操纵和药物测试,可以加快开发新的疗法,这些危及视力的疾病9,11。

可用于鼠标 RPE 隔离和文化的现有方法缺乏可重复性,并且无法以足够的可靠性在体内重新概括 RPE 功能。细胞往往在几天内失去色素化,六角形和跨皮电阻(TER)在培养13,20。由于从小鼠身上建立这些初级RPE细胞培养是一个具有挑战性的过程,这个优化的协议已经创建基于其他协议,从大鼠和人眼分离RPE细胞21,22,23解剖小鼠的眼睛,收集RPE和培养小鼠RPE细胞在体外。

Protocol

遵循了《在眼科和视力研究中使用动物的ARVO声明》的准则。 注:这种方法已被证明对不同遗传背景的小鼠成功,包括C57BL/6J,B10。D2-Hco H2d H2-T18 c/oSnJ和白化病小鼠,在不同年龄。最好使用8到12周大的小鼠来获得RPE细胞。来自老老鼠的RPE细胞在培养中繁殖较少,而幼鼠的细胞越来越小,这就要求汇集不同动物的眼睛才能有可行的培养物。 <p class="jove_…

Representative Results

该协议已被用来隔离和培养RPE细胞从转基因小鼠1。没有观察到小鼠菌株或性别之间的差异。研究结果有助于了解眼部疾病机制的一些重要方面,如与年龄有关的黄斑变性,这是老年人视力丧失的最常见原因。在此协议后分离的 RPE 细胞在播种后 24 小时内完全连接到膜插入上,并在 72 h1后显示典型的 RPE 大小、形态和色素沉着。一周后,一个高?…

Discussion

虽然1、13、20、22、26、27之前已经开发出几种小鼠RPE细胞分离和培养方法,但费尔南德斯-戈迪诺的方法首先使用膜插入,使RPE细胞在培养中的有效生长长达1周即9他们的协议1,9

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了麻省眼耳眼科基因组研究所的支持。

Materials

10 ml BD Luer-Lok tip syringe, disposable BD Biosciences 309604
15 ml centrifuge tube VWR International 21008-103
50 ml centrifuge tube VWR International 21008-951
Alpha Minimum Essential Medium Sigma-Aldrich M4526-500ML
Angled micro forceps WPI 501727
Bench-top centrifuge any
CO2 incubator Thermo HERA VIOS 160I CO2 SST TC 120V
Dissecting microscope Any
Dulbecco’s Phospate Buffered Saline no Calcium, no Magnesium Gibco 14190144
Dumont #5 45° Medical Biology tweezers, 0.05 x 0.01 mm tip, 11 cm length WPI 14101
Ethanol Sigma-Aldrich E7023-500ML
Falcon Easy-Grip Clear Polystyrene Cell Culture Dish, 35mm BD Biosciences 353001
Fetal Bovine Serum Hyclone SH30071.03 Heat inactivated.
Hank’s Balanced Salt Solution plus Calcium and Magnesium, no Phenol Red Life Technologies 14175095
Hank’s Balanced Salt Solution plus Calcium and Magnesium, no Phenol Red B6 Life Technologies 14025092
HEPES 1M Gibco 15630106
Hyaluronidase Sigma-Aldrich H-3506 1G
Hydrocortisone Sigma-Aldrich H-0396
Laminar flow hood Thermo CLASS II A2 4 115V PACKAGECLA
Laminin 1mg/ml Sigma-Aldrich L2020-1 MG Dilute in PBS at 37C to 1mg/ml
McPherson-Vannas Micro Scissors 8 cm long WPI 503216
Non-essential amino acids 100X Gibco 11140050
N1 Supplement 100X Sigma-Aldrich N6530-5ML
Penicillin-Streptomycin Gibco 15140-148
Sterile Bard-Parker Carbon steel surgical blade size 11 Fisher-Scientific 08-914B
Taurine Sigma-Aldrich T-0625
Tissue culture treated 12-well plates Fisher-Scientific 08-772-29
Tissue culture treated 6-well plates Fisher-Scientific 14-832-11
Transwell supports 6.5 mm Sigma-Aldrich CLS3470-48EA
Triiodo-thyronin Sigma-Aldrich T-5516
Trypsin-EDTA (0.25%), phenol red Gibco 25200056
Tweezer, Dumont #5 Medical Biology 11 cm, curved, stainless steel 0.02 x 0.06 mm Mod tips WPI 500232
Vannas Scissors 8cm long, stainless steel WPI 501790
Whatman Puradisc 25mm Syringe Filters 0.45μm pore size Fisher-Scientific 6780-2504

References

  1. Fernandez-Godino, R., Garland, D. L., Pierce, E. A. Isolation, culture and characterization of primary mouse RPE cells. Nature Protocols. 11 (7), 1206-1218 (2016).
  2. Strauss, O. The retinal pigment epithelium in visual function. Physiological Reviews. 85 (3), 845-881 (2005).
  3. Konari, K., et al. Development of the blood-retinal barrier in vitro: Formation of tight junctions as revealed by occludin and ZO-1 correlates with the barrier function of chick retinal pigment epithelial cells. Experimental Eye Research. 61 (1), 99-108 (1995).
  4. Kay, P., Yang, Y. C., Paraoan, L. Directional protein secretion by the retinal pigment epithelium: Roles in retinal health and the development of age-related macular degeneration. Journal of Cellular and Molecular Medicine. 17 (7), 833-843 (2013).
  5. Johnson, L. V., Leitner, W. P., Staples, M. K., Anderson, D. H. Complement activation and inflammatory processes in drusen formation and age related macular degeneration. Experimental Eye Research. 73 (6), 887-896 (2001).
  6. Hageman, G. S., et al. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Progress in Retinal and Eye Research. 20 (6), 705-732 (2001).
  7. Lommatzsch, A., et al. Are low inflammatory reactions involved in exudative age-related macular degeneration. Graefe’s Archive for Clinical and Experimental Ophthalmology. 246 (6), 803-810 (2008).
  8. Bandyopadhyay, M., Rohrer, B. Matrix metalloproteinase activity creates pro-angiogenic environment in primary human retinal pigment epithelial cells exposed to complement. Investigative Ophthalmology & Visual Science. 53 (4), 1953-1961 (2012).
  9. Fernandez-Godino, R., Garland, D. L., Pierce, E. A. A local complement response by RPE causes early-stage macular degeneration. Human Molecular Genetics. 24 (19), 5555-5569 (2015).
  10. Fernandez-Godino, R., Bujakowska, K. M., Pierce, E. A. Changes in extracellular matrix cause RPE cells to make basal deposits and activate the alternative complement pathway. Human Molecular Genetics. 27 (1), 147-159 (2018).
  11. Fernandez-Godino, R., Pierce, E. A. C3a triggers formation of sub-retinal pigment epithelium deposits via the ubiquitin proteasome pathway. Scientific Reports. 8 (1), 1-14 (2018).
  12. Farkas, M. H., et al. Mutations in Pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. American Journal of Pathology. 184 (10), 2641-2652 (2014).
  13. Geisen, P., Mccolm, J. R., King, B. M., Hartnett, E. Characterization of Barrier Properties and Inducible VEGF Expression of Several Types of Retinal Pigment Epithelium in Medium-Term Culture. Current Eye Research. 31, 739 (2006).
  14. Schütze, C., et al. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography. Retina. 34 (11), 2208-2217 (2014).
  15. Samuels, I. S., Bell, B. A., Pereira, A., Saxon, J., Peachey, N. S. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. Journal of Neurophysiology. 113 (4), 1085-1099 (2015).
  16. Garland, D. L., et al. Mouse genetics and proteomic analyses demonstrate a critical role for complement in a model of DHRD/ML, an inherited macular degeneration. Human Molecular Genetics. 23 (1), 52-68 (2014).
  17. Fu, L., et al. The R345W mutation in EFEMP1 is pathogenic and causes AMD-like deposits in mice. Human Molecular Genetics. 16 (20), 2411-2422 (2007).
  18. Greenwald, S. H., et al. Mouse Models of NMNAT1-Leber Congenital Amaurosis (LCA9) Recapitulate Key Features of the Human Disease. American Journal of Pathology. 186 (7), 1925-1938 (2016).
  19. Gupta, P. R., et al. Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects. Human Molecular Genetics. 27 (11), 2012-2024 (2018).
  20. Gibbs, D., Williams, D. S. Isolation and culture of primary mouse retinal pigmented epithelial cells. Advances in Experimental Medicine and Biology. 533, 347-352 (2003).
  21. Bonilha, V. L., Finnemann, S. C., Rodriguez-Boulan, E. Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. Journal of Cell Biology. 147 (7), 1533-1547 (1999).
  22. Nandrot, E. F., et al. Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking αvβ5 integrin. Journal of Experimental Medicine. 200 (12), 1539-1545 (2004).
  23. Maminishkis, A., et al. Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Investigative Ophthalmology and Visual Science. 47 (8), 3612-3624 (2006).
  24. Maminishkis, A., Miller, S. S. Experimental models for study of retinal pigment epithelial physiology and pathophysiology. Journal of Visualized Experiments. (45), (2010).
  25. Brydon, E. M., et al. AAV-Mediated Gene Augmentation Therapy Restores Critical Functions in Mutant PRPF31+/− iPSC-Derived RPE Cells. Molecular Therapy – Methods and Clinical Development. 15, 392-402 (2019).
  26. Shang, P., Stepicheva, N. A., Hose, S., Zigler, J. S., Sinha, D. Primary cell cultures from the mouse retinal pigment epithelium. Journal of Visualized Experiments. 2018 (133), (2018).
  27. Bonilha, V. Age and disease-related structural changes in the retinal pigment epithelium. Clinical Ophthalmology. 2 (2), 413 (2008).
check_url/kr/62228?article_type=t

Play Video

Cite This Article
Chinchilla, B., Getachew, H., Fernandez-Godino, R. Efficient Dissection and Culture of Primary Mouse Retinal Pigment Epithelial Cells. J. Vis. Exp. (168), e62228, doi:10.3791/62228 (2021).

View Video