Summary

从特纳综合征(45XO)胎儿细胞生成诱导多能干细胞,用于与该综合征相关的神经功能障碍的下游建模

Published: December 04, 2021
doi:

Summary

该协议描述了通过核切除递递递外体质粒,然后描述用于iPSC表征和神经元分化的方法,从胎儿组织成纤维细胞中产生整合的游离iPSCs。

Abstract

染色体非整倍体可引起严重的先天性畸形,包括中枢神经系统畸形和胎儿死亡。产前遗传学筛查纯粹是诊断性的,并不能阐明疾病机制。虽然来自非整倍体胎儿的细胞是带有染色体非整倍性的宝贵生物材料,但这些细胞的寿命很短,限制了它们在下游研究实验中的应用。诱导多能干细胞(iPSC)模型的生成是细胞制备非整倍体性状永久保存的有效方法。它们是自我更新的,并分化成特化细胞,让人联想到胚胎发育。因此,iPSC是研究早期发育事件的极好工具。特纳综合征(TS)是一种与完全或部分缺失的X染色体相关的罕见疾病。该综合征的特征是不孕症,身材矮小,内分泌,代谢,自身免疫和心血管疾病以及神经认知缺陷。以下方案描述了从TS(45XO)胎儿组织中分离和培养成纤维细胞,通过细胞核切除递送表观体重编程质粒,然后进行表征,从而产生整合游离的TsiPSCs。重新编程的TSIPSCs最初通过活细胞碱性磷酸酶染色进行筛选,然后对多能性生物标志物进行广泛的探测。对选定的菌落进行机械解剖,传代几次,并使用稳定的自我更新细胞进行进一步的实验。细胞表达多能转录因子OCT4、NANOG、SOX2、细胞表面标志物SSEA 4和TRA1-81是典型的多能干细胞。最初的45XO核型在重新编程后保留。TSiPSCs能够形成胚状体并分化成内胚层,中胚层和表达外胚层的细胞谱系特异性生物标志物((SRY BOX17),(肌球蛋白室重性CHAINα / β),(βIII管蛋白))。外源性外生体质粒自发丢失,在细胞中第15代后未检测到。这些TSiPSCs是一种宝贵的细胞资源,用于模拟导致与特纳综合征相关的神经认知缺陷的有缺陷的分子和细胞神经发育。

Introduction

非整倍体导致人类出生缺陷/先天性畸形和妊娠丢失。~50%-70%的妊娠丢失标本显示细胞遗传学异常。在怀孕早期丢失的非整倍体胚胎不容易获得用于实验分析,因此需要开发其他密切代表人类胚胎发生的模型。来自被诊断患有遗传疾病的细胞的诱导多能干细胞(iPSCs)已被用于模拟代表性的遗传不规则性及其对胎儿发育的影响1,2,3,4。这些iPSC类似于发育中胚胎的外胚层细胞,可以概括胚胎形成的早期事件。它们允许理解和表征早期哺乳动物胚胎中细胞谱系和模式的发育程序。iPSCs以前来自皮肤成纤维细胞和羊膜细胞,来自非整倍性综合征的产前诊断测试,如单体X(特纳综合征),8三体性(Warkany综合征2),13三体性(Patau综合征)和部分三体11;22(伊曼纽尔综合征)提供了有关失败发展的宝贵见解4

特纳综合征(TS)是一种罕见的疾病,其特征是女性不育,身材矮小,内分泌和代谢紊乱,自身免疫性疾病风险增加以及心血管疾病易感性5。虽然它是唯一可存活的单体综合征,但它对导致自然流产的发育中的胚胎也是致命的6。TS的存活个体表现出细胞中X染色体物质的改变程度。核型的范围从完全失去一条X染色体(45,XO)到像45,XO / 46,XX这样的马赛克;45,XO / 47,XXX,环形染色体的存在,Y染色体物质的存在等5。

该综合征的诊断通常通过对有症状个体的血液进行核型分析,并进行绒毛膜绒毛取样 (CVS) 以检测早期非整倍性综合征。由于非整倍性综合征约占自然流产的30%,因此在自然流产时对受孕产物(POC)进行核型分析是常规的。这些胎儿细胞包括具有细胞遗传学异常的绒毛膜绒毛和衍生自它们的iPSCs,为研究非整倍性综合征4,6提供了宝贵的生物材料来源。TS iPSCs先前已通过逆转录病毒重编程4从羊膜细胞,通过逆转录病毒重编程6从羊膜细胞,通过逆转录病毒重编程6从绒毛膜绒毛的成纤维细胞(通过产前诊断获得)建立,通过仙台病毒重编程从血液单核细胞7通过慢病毒重编程从TS个体的皮肤成纤维细胞4建立。.由于我们实验室的主要重点是了解发育障碍,因此我们从POC中产生了TS iPSCs,特别是自然流产的绒毛膜绒毛成分8。从该胎儿组织中分离出的所有细胞均具有45XO核型,并产生具有相同核型的iPSCs。这些iPSC是独一无二的,因为它们是第一个从流产胎儿产生的,并为研究非整倍性相关的妊娠失败提供了宝贵的资源。本文提供了通过外显体重编程从这种独特的细胞源产生iPSCs的详细方法。

iPSC生成的早期方法使用病毒转导和转座子来传递重编程因子。诱导细胞多能性的方法已经从使用整合逆转录病毒载体9、可切除慢病毒载体10、11和基于转座子的方法12发展到非整合性腺病毒载体13和仙台病毒载体14。基于逆转录病毒和慢病毒的重编程虽然有效,但涉及将重编程因子整合到宿主染色体中,导致插入突变,从而在iPSC中产生不可预见的影响。此外,基于病毒的重编程可防止 iPSC 的转化应用。已经探索了基于RNA的系统15和直接蛋白递送16,以完全消除与使用病毒和DNA转染相关的潜在风险。然而,这些方法已被证明是低效的。

2011年,Okita等人报道了通过shRNA增强TP53抑制的外生质粒来提高重编程效率。他们还用非转化性LMYC(与MYC相关的小细胞肺癌)代替了cMYC,以提高hiPSC的安全性。这些外生体质粒表达5种重编程因子:OCT4,LIN28,SOX2,KLF4,LMYC和shRNA用于TP5317,18。这些载体在染色体外保持,并在连续培养时从重编程的细胞中丢失,从而使品系在10-15次传代内无转基因。核细胞分离是一种特殊形式的电穿孔,可将核酸直接输送到宿主细胞的细胞核中。它是将重编程质粒递送到各种细胞类型的有效方法。外显体质粒具有成本效益,并补偿了细胞核摘除的高成本。该方法在优化条件下高效且可重复,可从各种体细胞中产生稳定的iPSC。在该协议中,我们描述了通过对外显体重编程质粒进行核切除术,从胎儿组织中分离的成纤维细胞产生iPSCs的方法。以下是从胎儿绒毛膜绒毛中分离成纤维细胞,质粒纯化,核切除,从重编程板中挑选集落以及建立稳定的iPSCs的详细方案。

必须确认新生成的iPSC中存在多能性状。这包括多能性相关因素的证明(例如,碱性磷酸酶表达,NANOG,SSEA4,Tra 1-80,Tra 1-81,E-钙粘蛋白;通常用免疫荧光或基因表达测定显示),通过体外分化测定鉴定三个胚层以验证其分化潜力,核型分析以确定染色体含量,STR分型以建立与亲本细胞的身份,验证外源性基因的丢失, 以及更严格的体内检测,如畸胎瘤形成和四倍体互补。在这里,我们描述了核型分析的表征方案,活细胞碱性磷酸酶染色,通过免疫荧光检测多能性相关生物标志物,体外分化测定和证明外源基因丢失的方法19。

Protocol

FCV是在马尼帕尔医院伦理委员会的批准下从班加罗尔的马尼帕尔医院获得的。 注:所有缓冲液和溶液的组成见表1。 1. 从胎儿绒毛膜绒毛(FCV)中分离成纤维细胞 胶原酶中的样本采集和组织分解 在无菌条件下在磷酸盐缓冲盐水(PBS)中收集FCV,并将(室温下)转运到细胞培养设施。 将绒毛转…

Representative Results

从具有45XO核型的自发流产胎儿中生成无整合的iPSC我们从具有特纳综合征(TS)特异性45XO核型的FCV中分离出成纤维细胞,并用外显体重编程质粒对其进行核感染,以产生可用于综合征下游建模的TSIpSC,特别是相关的神经功能缺陷(图1a&b)。我们使用非整合的表观载体和核检点进行转染实验(图1 c&d)。我们跟踪?…

Discussion

生成细胞遗传学异常胎儿组织的稳定细胞模型对于使有缺陷的表型永久化是必要的。iPSC途径是永久保存缺陷特性的最有效的细胞制备方法20。

多能干细胞(PSC)显示出自我更新和分化成特化细胞的特性,让人联想到早期裂解胚胎21。因此,PSC可以作为研究过早流产胎儿的早期分子,细胞和发育缺陷的优秀模型。

在本文?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

上述研究的财政支持由马尼帕尔高等教育学院提供。该生产线的表征部分在NCBS的M.M. Panicker实验室进行。我们感谢阿南德诊断实验室在核型分析方面的帮助。

Materials

0.15% trypsin Thermo Fisher Scientific 27250018 G Banding
2-mercaptoethanol Thermo Fisher Scientific 21985023 Pluripotency and Embryoid body medium
4', 6 diamidino-2-phenylindole Sigma Aldrich D8417 Immunocytochemistry
Activin A Sigma Aldrich SRP3003 Differentiation assays
Alkaline Phosphatase Live Stain Thermo Fisher Scientific A14353 AP staining
AMAXA Nucleofector II Lonza Nucleofection
AmnioMAX II complete media Thermo Fisher Scientific, Gibco 11269016 Medium specific for foetal chorionic villi cell cultures
Ampicillin HiMedia TC021 Plasmid purification
Anti Mouse IgG (H+L) Alexa Fluor 488 Invitrogen A11059 Immunocytochemistry
Anti Rabbit IgG (H+L) Alexa Fluor 488 Invitrogen A11034 Immunocytochemistry
Anti Rabbit IgG (H+L) Alexa Fluor 546 Invitrogen A11035 Immunocytochemistry
Antibiotic-Antimycotic Thermo Fisher Scientific, Gibco 15240096 Contamination control
Anti-E-Cadherin BD Biosciences 610181 Immunocytochemistry
Anti-Nanog BD Biosciences 560109 Immunocytochemistry
Anti-OCT3/4 BD Biosciences 611202 Immunocytochemistry
Anti-SOX17 BD Biosciences 561590 Immunocytochemistry
Anti-SOX2 BD Biosciences 561469 Immunocytochemistry
Anti-SSEA4 BD Biosciences 560073 Immunocytochemistry
Anti-TRA 1-81 Millipore MAB4381 Immunocytochemistry
basic Fibroblast Growth Factor[FGF2] Sigma Aldrich F0291 Pluripotency medium
Bone Morphogenetic Factor 4 Sigma Aldrich SRP3016 Differentiation assays
Bovine Serum Albumin Sigma Aldrich A3059 Blocking
Collagen Human Type IV BD Biosciences 354245 Differentiation assays
Collagenase blend Sigma Aldrich C8051 Digestion of foetal chorionic villi
Dexamethasone Sigma Aldrich D4902 Differentiation assays
DMEM F12 Thermo Fisher Scientific 11320033 Differentiation assays
FastDigest EcoR1 Thermo Scientific FD0274 Restriction digestion
Fibronectin Sigma Aldrich F2518 Differentiation assays
Giemsa Stain HiMedia S011 G Banding
Glacial Acetic Acid HiMedia AS001 Fixative for karyotyping
Glucose Sigma Aldrich G7528 Differentiation assays
GlutaMAX Thermo Fisher Scientific 35050061 Pluripotency and Embryoid body medium
Heparin sodium Sigma Aldrich H3149 Differentiation assays
Insulin solution human Sigma Aldrich I9278 Differentiation assays
Insulin Transferrin Selenite Sigma Aldrich I1884 Differentiation assays
KAPA HiFi PCR kit Kapa Biosystems KR0368 OriP, EBNA1 PCR
KaryoMAX Colcemid Thermo Fisher Scientific 15210040 Mitotic arrest for karyotyping
KnockOut DMEM Thermo Fisher Scientific 10829018 Pluripotency and Embryoid body medium
KnockOut Serum Replacement Thermo Fisher Scientific 10828028 Pluripotency and Embryoid body medium
Luria Bertani agar HiMedia M1151F Plasmid purification
Matrigel BD Biosciences 356234 Differentiation assays
MEM Non-essential amino acids Thermo Fisher Scientific 11140035 Pluripotency and Embryoid body medium
Methanol HiMedia MB113 Fixative for karyotyping
Myosin ventricular heavy chain α/β Millipore MAB1552 Immunocytochemistry
NHDF Nucleofector Kit Lonza VAPD-1001 Nucleofection
Paraformaldehyde (PFA) Sigma Aldrich P6148 Fixing cells
pCXLE-hOCT3/ 4-shp53-F Addgene 27077 Episomal reprogramming Plasmid
pCXLE-hSK Addgene 27078 Episomal reprogramming Plasmid
pCXLE-hUL Addgene 27080 Episomal reprogramming Plasmid
Penicillin Streptomycin   Thermo Fisher Scientific,  15070063 Pluripotency and Embryoid body medium
Phalloidin- Tetramethylrhodamine B isothiocyanate Sigma Aldrich P1951 Immunocytochemistry
Phosphate buffered saline Sigma Aldrich P4417 1 X PBS 1 tablet of PBS dissolved in 200mL of deionized water and sterilized by autoclaving
Storage: Room temperature.
PBST- 0.05% Tween 20 in 1X PBS.
Storage: Room temperature.
Plasmid purification Kit- Midi prep QIAGEN 12143 Plasmid purification
Potassium Chloride Solution HiMedia MB043 Hypotonic solution for karyotyping
QIAamp DNA Blood Kit Qiagen 51104 Genomic DNA isolation
RPMI 1640 Thermo Fisher Scientific 11875093 Hepatocyte differentiation medium
Sodium Citrate HiMedia RM255 Hypotonic solution for karyotyping
Triton X-100 HiMedia MB031 Permeabilisation
Trypsin-EDTA (0.05%) Thermo Fisher Scientific, Gibco 25300054 Subculture of  foetal chorionic villi fibroblasts
Tween 20 HiMedia MB067 Preparation of PBST
β III tubulin Sigma Aldrich T8578 Immunocytochemistry
Y-27632 dihydrochloride Sigma Aldrich Y0503 Differentiation assays

References

  1. Verlinsky, Y., et al. Human embryonic stem cell lines with genetic disorders. Reproductive BioMedicine Online. 10, 105-110 (2005).
  2. Eiges, R., et al. Developmental Study of Fragile X Syndrome Using Human Embryonic Stem Cells Derived from Preimplantation Genetically Diagnosed Embryos. Cell Stem Cell. 1, 568-577 (2007).
  3. Biancotti, J. -. C., et al. Human Embryonic Stem Cells as Models for Aneuploid Chromosomal Syndromes. STEM CELLS. 28, 1530-1540 (2010).
  4. Li, W., et al. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes. Human Molecular Genetics. 21, 32-45 (2012).
  5. Gravholt, C. H., Viuff, M. H., Brun, S., Stochholm, K., Andersen, N. H. Turner syndrome: mechanisms and management. Nature Reviews Endocrinology. 15, 601-614 (2019).
  6. Luo, Y., et al. Uniparental disomy of the entire X chromosome in Turner syndrome patient-specific induced pluripotent stem cells. Cell Discovery. 1, 15022 (2015).
  7. Luo, Y., et al. Generation of an induced pluripotent stem cell line from an adult male with 45,X/46,XY mosaicism. Stem Cell Research. 27, 42-45 (2018).
  8. Parveen, S., Panicker, M. M., Gupta, P. K. Generation of an induced pluripotent stem cell line from chorionic villi of a Turner syndrome spontaneous abortion. Stem Cell Research. 19, (2017).
  9. Takahashi, K., et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 131, 861-872 (2007).
  10. Soldner, F., et al. Parkinson’s Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors. Cell. 136, 964-977 (2009).
  11. Somers, A., et al. Generation of Transgene-Free Lung Disease-Specific Human Induced Pluripotent Stem Cells Using a Single Excisable Lentiviral Stem Cell Cassette. STEM CELLS. 28, 1728-1740 (2010).
  12. Woltjen, K., et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458, 766-770 (2009).
  13. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., Hochedlinger, K. Induced Pluripotent Stem Cells Generated Without Viral Integration. Science. 322, 945-949 (2008).
  14. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B. 85, 348-362 (2009).
  15. Warren, L., et al. Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell. 7, 618-630 (2010).
  16. Kim, D., et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 4, 472-476 (2009).
  17. Yu, J., et al. Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science. 324, 797-801 (2009).
  18. Okita, K., et al. A more efficient method to generate integration-free human iPS cells. Nature Methods. 8, 409-412 (2011).
  19. Martí, M., et al. Characterization of pluripotent stem cells. Nature Protocols. 8, 223-253 (2013).
  20. Avior, Y., Sagi, I., Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Molecular Cell Biology. 17, 170-182 (2016).
  21. Ambartsumyan, G., Clark, A. T. Aneuploidy and early human embryo development. Human Molecular Genetics. 17, 10-15 (2008).
  22. Lancaster, M. A., Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols. 9, 2329-2340 (2014).
check_url/kr/62240?article_type=t

Play Video

Cite This Article
Veerasubramanian, N., Karthikeyan, V., Hegde, S., Dhanushkodi, A., Parveen, S. Generation of Induced Pluripotent Stem Cells from Turner Syndrome (45XO) Fetal Cells for Downstream Modelling of Neurological Deficits Associated with the Syndrome. J. Vis. Exp. (178), e62240, doi:10.3791/62240 (2021).

View Video