Summary

使用顶空固相微萃取与气相色谱-质谱联用分析黑醋栗果实中的挥发性化合物

Published: June 09, 2021
doi:

Summary

这里描述了一个顶空固相微萃取气相色谱平台,用于在成熟的黑醋栗果实中快速、可靠和半自动地进行挥发性鉴定和定量。该技术可用于增加有关水果香气的知识,并选择具有增强风味的品种以进行育种。

Abstract

人们越来越有兴趣测量成熟水果排放的挥发性有机化合物(VOCs),以培育具有增强感官特性的品种或品种,从而提高消费者的接受度。最近开发了高通量代谢组学平台,用于量化不同植物组织中的各种代谢物,包括负责水果味道和香气质量的关键化合物(挥发性组学)。这里描述了一种使用顶空固相微萃取(HS-SPME)与气相色谱-质谱(GC-MS)结合使用的方法,用于鉴定和定量成熟黑醋栗果实排放的VOCs,这种浆果因其风味和健康益处而受到高度赞赏。

收获黑醋栗植物(Ribes nigrum)的成熟果实并直接在液氮中冷冻。组织均质后产生细粉,解冻样品并立即与氯化钠溶液混合。离心后,将上清液转移到含有氯化钠的顶空玻璃小瓶中。然后使用固相微萃取(SPME)纤维和与离子阱质谱仪耦合的气相色谱仪提取VOC。通过积分峰面积,对所得离子色谱图进行挥发性定量,对每个VOC使用特定的 m / z 离子。通过比较在与样品相同条件下运行的纯商业标准的保留时间和质谱,确认了正确的VOC注释。在不同欧洲地区种植的成熟黑醋栗果实中鉴定出60多种VOC。在已确定的VOC中,关键的芳香化合物,如萜类化合物和C6挥发物,可用作黑醋栗果实质量的生物标志物。此外,还讨论了该方法的优缺点,包括预期的改进。此外,还强调了使用控制装置进行批量校正和最小化漂移强度。

Introduction

风味是任何水果的基本质量特征,会影响消费者的接受度,从而显着影响适销性。风味感知涉及味道和嗅觉系统的组合,并且在化学上取决于成熟水果排放的各种化合物的存在和浓度,这些化合物积聚在可食用植物部分,或者在VOC的情况下,由成熟的水果排放12。虽然传统育种一直专注于产量和抗虫性等农艺性状,但由于遗传复杂性和难以正确表型这些特征,水果品质性状(包括风味)的改善长期以来一直被忽视,导致消费者不满34。代谢组学平台的最新进展已成功鉴定和量化负责水果味道和香气的关键化合物5678。此外,代谢物分析与基因组或转录组学工具的结合可以阐明水果风味背后的遗传学,这反过来将有助于育种计划开发具有增强感官特征的新品种2491011121314

黑醋栗(Ribes nigrum)浆果因其风味和营养特性而受到高度赞赏,在欧洲,亚洲和新西兰的温带地区广泛种植15。大部分生产是加工食品和饮料,这在北欧国家非常受欢迎,主要是由于浆果的感官特性。水果的强烈颜色和风味是成熟水果中存在的花青素,糖,酸和VOC的组合的结果161718。对黑醋栗挥发物的分析可以追溯到20世纪60年代192021。最近,一些研究集中在黑醋栗VOCs上,确定了水果香气感知的重要化合物,并评估了基因型,环境或储存和加工条件对VOC含量的影响517182223

由于其众多优点,高通量易失性分析的首选技术是HS-SPME/GC-MS2425。涂有聚合物相的二氧化硅纤维安装在注射器装置上,允许吸附纤维中的挥发物,直到达到平衡相。顶空萃取可保护纤维免受基质中存在的非挥发性化合物的影响24。SPME可以成功地分离出大量高度可变浓度(十亿分之一到百万分之一)的挥发性有机化合物25。此外,它是一种无溶剂技术,需要有限的样品处理。HS-SPME的其他优点是易于自动化和相对较低的成本。

然而,其成功可能有限,具体取决于VOC的化学性质,提取方案(包括时间,温度和盐浓度),样品稳定性以及足够的果实组织的可用性2627。本文提出了一种通过HS-SPME分离黑加仑VOCs的方案,并通过气相色谱结合离子阱质谱仪进行分析。在植物材料的数量,样品稳定性以及提取和色谱的持续时间之间实现了平衡,以便能够处理大量的黑醋栗样品,其中一些在本研究中提出。特别是,五个品种(”Andega”,”Ben Tron”,”Ben Gairn”,”Ben Tirran”和”Tihope”)的VOC图谱和/或色谱图将作为示例数据进行介绍和讨论。此外,在其他水果浆果物种(如草莓(Fragaria x ananassa),覆盆子(Rubusidaeus)和蓝莓(Vaccinium spp.)中,相同的方案已成功用于VOC测量。

Protocol

1. 水果收获 每个基因型和/或处理种植4至6株植物,以确保足够的果实材料和变异性。 如果可能的话,在同一天收获样品;如果没有足够的水果材料,将不同日期收获的样品汇集在一起。注意:建议收获时间(上午,中午,下午)保持大致相同,因为VOC曲线受白天/昼夜节律的影响28,29,30,<sup class="xre…

Representative Results

在不同条件或地点生长或属于不同基因型的大量水果作物中进行高通量VOC分析对于准确的香气表型是必要的。本文介绍了一个快速、半自动化的HS-SPME/GC-MS平台,用于黑加仑品种的VOC相对定量。VOC检测和鉴定基于为分析浆果果实种类而开发的文库(表1)。在上述条件下,HS-SPME/GC-MS获得的典型成熟黑醋栗果实挥发性剖面图(总离子色谱图)如图 1A所示。总共确定?…

Discussion

长期以来,由于挥发性化合物合成背后的复杂遗传学和生物化学以及缺乏适当表型的技术,水果香气的滋生一直受到阻碍。然而,代谢组学平台的最新进展,结合基因组工具,最终允许鉴定负责消费者偏好的代谢物,并培育出风味更好的作物3。虽然在模型水果番茄910方面取得了大部分进展,但在其他经济相关的作物物种(如草莓,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢马拉加大学的 Servicios Centrales de Apoyo a la Investigación 对HS-SPME /GC-MS的测量。我们感谢萨拉·费尔南德斯-帕拉西奥斯·坎波斯在波动性定量方面提供的帮助。我们也感谢GoodBerry的财团成员提供水果材料。

Materials

10 mL screw top headspace vials Thermo Scientific 10-HSV
18 mm screw cap Silicone/PTFE Thermo Scientific 18-MSC
5 mL Tube with HDPE screw cap VWR 216-0153
Centrifuge Thermo Scientific 75002415
Methanol for HPLC Merck 34860-1L-R
N-pentadecane (D32, 98%) Cambridge Isotope Laboratories DLM-1283-1
Sodium chloride Merck S9888
SPME fiber PDMS/DVB Merck 57345-U
Stainless grinding jars for TissueLyser Qiagen 69985
TissueLyser II Qiagen 85300 Can be subsituted by mortar and pestle or cryogenic mill
Trace GC gas chromatograph-ITQ900 ion trap mass spectrometer Thermo Scientific
Triplus RSH autosampler with automated SPME device Thermo Scientific 1R77010-0450
Water for HPLC Merck 270733-1L
Xcalibur 4.2 SP1 Thermo Scientific software

References

  1. Klee, H. J. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytologist. 187 (1), 44-56 (2010).
  2. Ferrão, L. F. V., et al. Genome-wide association of volatiles reveals candidate loci for blueberry flavor. New Phytologist. 226 (6), 1725-1737 (2020).
  3. Klee, H. J., Tieman, D. M. The genetics of fruit flavour preferences. Nature Reviews Genetics. 19, 347-356 (2018).
  4. Vallarino, J. G., et al. Identification of quantitative trait loci and candidate genes for primary metabolite content in strawberry fruit. Horticulture Research. 6, 4 (2019).
  5. Jung, K., Fastowski, O., Poplacean, I., Engel, K. H. Analysis and sensory evaluation of volatile constituents of fresh blackcurrant (Ribes nigrum L.) fruits. Journal of Agricultural and Food Chemistry. 65 (43), 9475-9487 (2017).
  6. Vallarino, J. G., et al. Genetic diversity of strawberry germplasm using metabolomic biomarkers. Scientific Reports. 8, 14386 (2018).
  7. Zhang, W., et al. Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chemistry. 336, 127721 (2021).
  8. Farneti, B., et al. Exploring blueberry aroma complexity by chromatographic and direct-injection spectrometric techniques. Frontiers in Plant Science. 8, 617 (2017).
  9. Tikunov, Y., et al. The genetic and functional analysis of flavor in commercial tomato: the FLORAL4 gene underlies a QTL for floral aroma volatiles in tomato fruit. The Plant Journal. 103 (3), 1189-1204 (2020).
  10. Tieman, D., et al. A chemical genetic roadmap to improved tomato flavor. Science. 355 (6323), 391-394 (2017).
  11. Sánchez-Sevilla, J. F., Cruz-Rus, E., Valpuesta, V., Botella, M. A., Amaya, I. Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses. BMC Genomics. 15, 218 (2014).
  12. Kumar, S., et al. Genome-wide scans reveal genetic architecture of apple flavour volatiles. Molecular Breeding. 35, 118 (2015).
  13. Bauchet, G., et al. Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytologist. 215 (2), 624-641 (2017).
  14. Sánchez, G., et al. An integrative ‘ omics’ approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics. 14, 343 (2013).
  15. Hummer, K. E., Dale, A. Horticulture of Ribes. Forest Pathology. 40 (3-4), 251-263 (2010).
  16. Vagiri, M., et al. Phenols and ascorbic acid in black currants (Ribes nigrum L.): Variation due to genotype, location, and year. Journal of Agricultural and Food Chemistry. 61 (39), 9298-9306 (2013).
  17. Marsol-Vall, A., Kortesniemi, M., Karhu, S. T., Kallio, H., Yang, B. Profiles of volatile compounds in blackcurrant (Ribes nigrum) cultivars with a special focus on the influence of growth latitude and weather conditions. Journal of Agricultural and Food Chemistry. 66 (28), 7485-7495 (2018).
  18. Varming, C., Petersen, M. A., Poll, L. Comparison of isolation methods for the determination of important aroma compounds in black currant (Ribes nigrum L.) juice, using nasal impact frequency profiling. Journal of Agricultural and Food Chemistry. 52 (6), 1647-1652 (2004).
  19. Andersson, J., von Sydow, E. The aroma of black currants I. Higher boiling compounds. Acta Chemica Scandinavica. 18, 1105-1114 (1964).
  20. Andersson, J., von Sydow, E. The aroma of black currants. III. Chemical characterization of different varieties and stages of ripeness by gas chromatography. Acta Chemica Scandinavica. 20, 529-535 (1966).
  21. Andersson, J., von Sydow, E. The aroma of black currants II. Lower boiling compounds. Acta Chemica Scandinavica. 20, 522-528 (1966).
  22. Marsol-Vall, A., Laaksonen, O., Yang, B. Effects of processing and storage conditions on volatile composition and odor characteristics of blackcurrant (Ribes nigrum) juices. Food Chemistry. 293, 151-160 (2019).
  23. Del Castillo, M. L. R., Dobson, G. Varietal differences in terpene composition of blackcurrant (Ribes nigrum L) berries by solid phase microextraction/gas chromatography. Journal of the Science of Food and Agriculture. 82 (13), 1510-1515 (2002).
  24. Azzi-Achkouty, S., Estephan, N., Ouaini, N., Rutledge, D. N. Headspace solid-phase microextraction for wine volatile analysis. Critical Reviews in Food Science and Nutrition. 57 (10), 2009-2020 (2017).
  25. Vallarino, J. G., Antonio, C., et al. Acquisition of volatiles compounds by gas chromatography-mass spectrometry (GC-MS). Plant Metabolomics: Methods and Protocols. 1778, 225-239 (2018).
  26. Moreira, N., Lopes, P., Cabral, M., Guedes de Pinho, P. HS-SPME/GC-MS methodologies for the analysis of volatile compounds in cork material. European Food Research and Technology. 242, 457-466 (2016).
  27. Rambla, J. L., López-Gresa, M. P., Bellés, J. M., Granell, A., Alonso, J. M., Stepanova, A. N. Metabolomic profiling of plant tissues. Plant Functional Genomics and Protocols, Methods in Molecular Biology. 1284, 221-235 (2015).
  28. Abbas, F., et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta. 246 (5), 803-816 (2017).
  29. Kolosova, N., Gorenstein, N., Kish, C. M., Dudareva, N. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell. 13 (10), 2333-2347 (2001).
  30. Dudareva, N., Pichersky, E., Gershenzon, J. Biochemistry of plant volatiles. Plant Physiology. 135 (4), 1893-1902 (2004).
  31. Borges, R. M., Ranganathan, Y., Krishnan, A., Ghara, M., Pramanik, G. When should fig fruit produce volatiles? Pattern in a ripening process. Acta Oecologica. 37 (6), 611-618 (2011).
  32. Jarret, D. A., et al. A transcript and metabolite atlas of blackcurrant fruit development highlights hormonal regulation and reveals the role of key transcription factors. Frontiers in Plant Science. 9, 1-22 (2018).
  33. Li, B., Lecourt, J., Bishop, G. Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction-a review. Plants. 7 (1), 3 (2018).
  34. Ul-Hassan, M. N., Zainal, Z., Ismail, I. Green leaf volatiles: Biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnology Journal. 13 (6), 727-739 (2015).
  35. Gaston, A., Osorio, S., Denoyes, B., Rothan, C. Applying the Solanaceae strategies to strawberry crop improvement. Trends in Plant Science. 25 (2), 130-140 (2020).
  36. Gilbert, J. L., et al. Identifying breeding priorities for blueberry flavor using biochemical, sensory, and genotype by environment analyses. PLoS ONE. 10 (9), 0138494 (2015).
  37. Bueno, M., Resconi, V. C., Campo, M. M., Ferreira, V., Escudero, A. Development of a robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. Food Chemistry. 281, 49-56 (2019).
  38. Burzynski-Chang, E. A., et al. HS-SPME-GC-MS analyses of volatiles in plant populations-quantitating compound × individual matrix effects. Molecules. 23 (10), 2436 (2018).

Play Video

Cite This Article
Pott, D. M., Vallarino, J. G., Osorio, S. Profiling Volatile Compounds in Blackcurrant Fruit using Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. J. Vis. Exp. (172), e62421, doi:10.3791/62421 (2021).

View Video