Summary

在一只兔中产生两个具有不同血流动力学的囊状弹性蛋白酶消化动脉瘤

Published: April 15, 2021
doi:

Summary

该协议描述了创建具有两个具有不同血流动力学(残端和分叉星座)的弹性蛋白酶消化动脉瘤的兔子模型的步骤。这允许在单个动物内具有不同血管结构和血流动力学状况的动脉瘤中测试新型血管内装置。

Abstract

具有接近人颅内动脉瘤的血流动力学、形态学和组织学特征的临床前动物模型在理解病理生理过程以及开发和测试新的治疗策略方面起着关键作用。这项研究旨在描述一种新的兔动脉瘤模型,该模型允许在同一动物内创建两个具有不同血流动力学条件的弹性蛋白酶消化的囊状动脉瘤。

五只平均体重为4.0(±0.3)公斤,平均年龄为25(±5)周的雌性新西兰白兔接受了显微外科残端和分叉动脉瘤的形成。一个动脉瘤(残端)是由右颈总动脉(CCA)暴露在其起源头躯干造成的。在CCA原点应用了一个临时夹子,另一个在2厘米以上。用局部注射100U弹性蛋白酶处理该段20分钟。通过将弹性蛋白酶处理的动脉袋缝合到右侧CCA与左侧CCA的端对侧吻合口中,产生了第二个动脉瘤(分叉)。创建后立即通过荧光血管造影控制通畅性。

平均手术时间为221分钟。在同一只动物中产生两个动脉瘤在所有兔子中都是成功的,没有并发症。除一个分叉动脉瘤外,所有动脉瘤在手术后立即未愈合,由于弹性蛋白酶孵育和立即腔内血栓形成,该动脉瘤显示出极端的组织反应。在手术和长达一个月的随访期间未观察到死亡。发病率仅限于一过性前庭综合征(一只兔子),该综合征在一天内自发恢复。

这里首次证明了创建具有残端和分叉血流动力学特征以及高度退化壁条件的双动脉瘤兔模型的可行性。该模型允许在不同流动条件下基于动脉瘤生物学研究自然病程和潜在的治疗策略。

Introduction

颅内动脉瘤是一种严重的疾病,破裂后死亡率达到50%,10-20%的患者长期残疾1。在过去的十年中,血管内治疗方案发展迅速,但与此同时,复发率也在增加,卷曲后动脉瘤再通率高达33% 23。为了更好地了解动脉瘤闭塞和再通的潜在病理生理学,以及开发和测试新的血管内装置,目前需要可靠的临床前模型,其血流动力学、形态学和组织学特征与人颅内动脉瘤相似4,56.截至今天,还没有明确的模型作为临床前试验的标准,研究人员可以使用大量的物种和技术78

然而,兔子是一个特别感兴趣的物种,因为它的颈部动脉和人类脑血管之间的大小和血流动力学相似性,以及其相似的凝血和溶栓特征。颈总动脉 (CCA) 上具有弹性蛋白酶消化囊状动脉瘤的几种模型在流动条件、几何特征和壁特征方面显示出与人颅内动脉瘤的定性和定量相似性910,1112。本研究旨在描述一种在同一动物中同时使用残肢和分叉弹性蛋白酶消化动脉瘤创建新的兔动脉瘤模型的技术。手术技术的灵感来自Hoh等人13和Wanderer等人14的技术,略有修改,以提供良好的标准化和可重复性,并确保低死亡率和发病率。

Protocol

注意:该实验已获得瑞士伯尔尼州地方动物护理委员会的批准(申请号BE108/16),所有动物护理和程序均按照机构指南和3R原则15,16进行。数据根据 REACH 指南报告。围手术期管理由董事会认证的兽医麻醉师进行。在这项研究中,雌性新西兰白兔,平均体重为4.0(±0.3)公斤,平均年龄为25(±5)周,被饲养在22-24°C的室温下,进行12小时的光照/黑暗循环?…

Representative Results

残端和分叉动脉瘤的产生在所有5只新西兰大白兔中均成功,没有术中并发症。在手术期间或24±2天的随访期间未观察到死亡。一只兔子经历了术后并发症,伴有前庭综合征和右侧失明。动物在24小时后完全自发恢复。这种并发症不会干扰其正常活动(自由运动,水和食物摄入,与其他动物的相互作用),并且不需要任何特殊治疗。没有自发性动脉瘤破裂。 平均手术时间为221分…

Discussion

最常见的动脉瘤形成技术包括通过开放或血管内方法在右侧CCA的起源处创建残端动脉瘤。该模型已被验证为一种稳定的非生长动脉瘤,随时间2021 保持开放状态。第二种可能的技术涉及通过手术在左侧吻合右侧CCA并在分叉处缝合动脉瘤袋142223来建立动脉分叉动脉瘤。尽管这两?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢Hans Rudolf Widmer教授,Luca Remonda博士和Javier Fandino教授对这项工作的科学支持和技术贡献。特别感谢Olgica Beslac在手术过程中的建议和Kay Nettelbeck的帮助。此外,我们感谢Daniela Casoni DVM,博士和医学兽医。Luisana Garcia,PD Alessandra Bergadano博士和Carlotta Detotto博士,感谢他们敬业的兽医支持。

Materials

4-0 resorbable suture Ethicon Inc., USA VCP292ZH
4-0 resorbable suture Ethicon Inc., USA VCP304H
6-0 non absorbable suture B. Braun, Germany C0766070
9-0 non absorbable suture B. Braun, Germany G1111140
Adrenaline Amino AG 1445419 any generic
Amiodarone Helvepharm AG 5078567 any generic
Anesthesia machine Dräger any other
Aspirin Sanofi-Aventis (Suisse) SA 622693 any generic
Atropine Labatec Pharma SA 6577083 any generic
Bandpass filter blue Thorlabs FD1B any other
Bandpass filter green Thorlabs FGV9 any other
Biemer vessel clip (2x) B. Braun Medical AG, Aesculap, Switzerland FD560R any other
Bipolar forceps any other
Bispectral index (neonatal) any other
Blood pressure cuff (neonatal) any other
Bycilces spotlight any other
Clamoxyl GlaxoSmithKline AG 758808 any generic
Dexmedetomidine Ever Pharma 136740-1 any generic
Elastase Sigma Aldrich E7885
Electrocardiogram electrodes
Ephedrine Amino AG 1435734
Esmolol OrPha Swiss GmbH 3284044
Fentanyl (intravenous use) Janssen-Cilag AG 98683
Fentanyl (transdermal) Mepha Pharma AG 4008286
Fluoresceine Curatis AG 5030376
Fragmin Pfizer PFE Switzerland GmbH 1906725
Heating pad or heating forced-air warming system
Isotonic sodium chloride solution (0.9%) Fresenius KABI 336769
Ketamine Pfizer PFE Switzerland GmbH 342261
lid retractor Approach
Lidocaine Streuli Pharma AG 747466
Longuettes
Metacam Boehringer Ingelheim P7626406 Medication
Methadone Streuli Pharma AG 1084546 Sedaton
Micro-forceps  curved Ulrich Swiss, Switzerland U52-015-15
Micro-forceps  straight 2x Ulrich Swiss, Switzerland U52-010-15
Microscissors Ulrich Swiss , Switzerland U52-327-15
Midazolam Accord Healthcare AG 7752484
Needle 23 G arteriotomy
Needle holder
O2-Face mask
Operation microscope Wild Heerbrugg
Papaverin Bichsel topical application
Povidone iodine Mundipharma Medical Company any generic
Prilocaine-lidocaine creme Emla
Propofol B. Braun Medical AG, Switzerland General anesthesia
Pulse oxymeter
Rectal temperature probe (neonatal)
Ringer Lactate Bioren Sintetica SA Infusion
Ropivacain Aspen Pharma Schweiz GmbH 1882249 Local anesthesia
Scalpell Swann-Morton 210
Small animal shaver
Soft tissue forceps
Soft tissue spreader
Stainless steel sponge bowls
Sterile micro swabs
Stethoscope
Surgery drape
Surgical scissors
Syringes 1 mL, 2 mL, and 5 mL
Tris-Buffer Sigma Aldrich 93302 Elastase solution
Vascular clip applicator B. Braun, Germany FT495T
Vein and arterial catheter 22 G
vessel loop Approach
video camera or smartphone
Vitarubin Streuli Pharma AG 6847559
Yasargil titan standard clip (2x) B. Braun Medical AG, Aesculap, Switzerland FT242T

References

  1. Grasso, G., Alafaci, C., Macdonald, R. L. Management of aneurysmal subarachnoid hemorrhage: State of the art and future perspectives. Surgical Neurology International. 8, 11 (2017).
  2. Raymond, J., et al. Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke. 34 (6), 1398-1403 (2003).
  3. Marbacher, S., Niemela, M., Hernesniemi, J., Frosen, J. Recurrence of endovascularly and microsurgically treated intracranial aneurysms-review of the putative role of aneurysm wall biology. Neurosurgical Review. 42 (1), 49-58 (2019).
  4. Thompson, J. W., et al. In vivo cerebral aneurysm models. Neurosurgical Focus. 47 (1), 20 (2019).
  5. Bouzeghrane, F., et al. In vivo experimental intracranial aneurysm models: a systematic review. American Journal of Neuroradiology. 31 (3), 418-423 (2010).
  6. Strange, F., Gruter, B. E., Fandino, J., Marbacher, S. Preclinical intracranial aneurysm models: a systematic review. Brain Sciences. 10 (3), 134 (2020).
  7. Marbacher, S., Strange, F., Frosen, J., Fandino, J. Preclinical extracranial aneurysm models for the study and treatment of brain aneurysms: A systematic review. Journal of Cerebral Blood Flow & Metabolism. 40 (5), 922-938 (2020).
  8. Fahed, R., et al. Testing flow diversion in animal models: a systematic review. Neuroradiology. 58 (4), 375-382 (2016).
  9. Zeng, Z., et al. Hemodynamics and anatomy of elastase-induced rabbit aneurysm models: similarity to human cerebral aneurysms. American Journal of Neuroradiology. 32 (3), 595-601 (2011).
  10. Ding, Y. H., et al. Long-term patency of elastase-induced aneurysm model in rabbits. American Journal of Neuroradiology. 27 (1), 139-141 (2006).
  11. Short, J. G., et al. Elastase-induced saccular aneurysms in rabbits: comparison of geometric features with those of human aneurysms. American Journal of Neuroradiology. 22 (10), 1833-1837 (2001).
  12. Andereggen, L., et al. Three-dimensional visualization of aneurysm wall calcification by cerebral angiography: Technical case report. Journal of Clinical Neuroscience. 73, 290-293 (2020).
  13. Hoh, B. L., Rabinov, J. D., Pryor, J. C., Ogilvy, C. S. A modified technique for using elastase to create saccular aneurysms in animals that histologically and hemodynamically resemble aneurysms in human. Acta Neurochirurgica. 146 (7), 705-711 (2004).
  14. Wanderer, S., et al. Arterial pouch microsurgical bifurcation aneurysm model in the rabbit. Journal of Visualized Experiments: JoVE. (159), e61157 (2020).
  15. Percie du Sert, N., et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biology. 18 (7), 3000411 (2020).
  16. Prescott, M. J., Lidster, K. Improving quality of science through better animal welfare: the NC3Rs strategy. Lab Animal. 46 (4), 152-156 (2017).
  17. Portier, K., Ida, K. K. The ASA Physical Status Classification: What is the evidence for recommending its use in veterinary anesthesia?-A systematic review. Frontiers in Veterinary Science. 5, 204 (2018).
  18. Gruter, B. E., et al. Fluorescence video angiography for evaluation of dynamic perfusion status in an aneurysm preclinical experimental setting. Operative Neurosurgery. 17 (4), 432-438 (2019).
  19. Strange, F., et al. Fluorescence angiography for evaluation of aneurysm perfusion and parent artery patency in rat and rabbit aneurysm models. Journal of Visualized Experiments: JoVE. (149), e59782 (2019).
  20. Altes, T. A., et al. 1999 ARRS Executive Council Award. Creation of saccular aneurysms in the rabbit: a model suitable for testing endovascular devices. American Journal of Roentgenology. 174 (2), 349-354 (2000).
  21. Brinjikji, W., Ding, Y. H., Kallmes, D. F., Kadirvel, R. From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment. Journal of NeuroInterventional Surgery. 8 (5), 521-525 (2016).
  22. Sherif, C., Marbacher, S., Erhardt, S., Fandino, J. Improved microsurgical creation of venous pouch arterial bifurcation aneurysms in rabbits. American Journal of Neuroradiology. 32 (1), 165-169 (2011).
  23. Bavinzski, G., et al. Experimental bifurcation aneurysm: a model for in vivo evaluation of endovascular techniques. Minimally Invasive Neurosurgery. 41 (3), 129-132 (1998).
  24. Lewis, D. A., et al. Morbidity and mortality associated with creation of elastase-induced saccular aneurysms in a rabbit model. American Journal of Neuroradiology. 30 (1), 91-94 (2009).
  25. Wang, K., et al. Neck injury is critical to elastase-induced aneurysm model. American Journal of Neuroradiology. 30 (9), 1685-1687 (2009).
  26. Cesar, L., et al. Neurological deficits associated with the elastase-induced aneurysm model in rabbits. Neurological Research. 31 (4), 414-419 (2009).
  27. Aoki, T., Nishimura, M. The development and the use of experimental animal models to study the underlying mechanisms of CA formation. Journal of Biomedicine and Biotechnology. 2011, 535921 (2011).
  28. Frosen, J., Cebral, J., Robertson, A. M., Aoki, T. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurgical Focus. 47 (1), 21 (2019).
  29. Gruter, B. E., et al. Comparison of aneurysm patency and mural inflammation in an arterial rabbit sidewall and bifurcation aneurysm model under consideration of different wall conditions. Brain Sciences. 10 (4), 197 (2020).
  30. Marbacher, S., et al. The Helsinki rat microsurgical sidewall aneurysm model. Journal of Visualized Experiments: JoVE. (92), e51071 (2014).
  31. Marbacher, S., et al. Complex bilobular, bisaccular, and broad-neck microsurgical aneurysm formation in the rabbit bifurcation model for the study of upcoming endovascular techniques. American Journal of Neuroradiology. 32 (4), 772-777 (2011).
  32. Marbacher, S., et al. Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model. Stroke. 45 (1), 248-254 (2014).
  33. Gruter, B. E., et al. Testing bioresorbable stent feasibility in a rat aneurysm model. Journal of Neurointerventional Surgery. 11 (10), 1050-1054 (2019).
  34. Nevzati, E., et al. Biodegradable magnesium stent treatment of saccular aneurysms in a rat model – Introduction of the surgical technique. Journal of Visualized Experiments: JoVE. (128), e56359 (2017).
  35. Gruter, B. E., et al. Patterns of neointima formation after coil or stent treatment in a rat saccular sidewall aneurysm model. Stroke. 52 (3), 1043-1052 (2021).
  36. Wanderer, S., et al. Aspirin treatment prevents inflammation in experimental bifurcation aneurysms in New Zealand White rabbits. Journal of NeuroInterventional Surgery. , (2021).
  37. Lyu, Y., et al. An effective and simple way to establish eastase-induced middle carotid artery fusiform aneurysms in rabbits. Biomed Research International. 2020 (10), 1-12 (2020).
  38. Wang, S., et al. Rabbit aneurysm models mimic histologic wall types identified in human intracranial aneurysms. Journal of NeuroInterventional Surgery. 10 (4), 411-415 (2018).
  39. Kang, W., et al. A modified technique improved histology similarity to human intracranial aneurysm in rabbit aneurysm model. Neuroradiology Journal. 23 (5), 616-621 (2010).
  40. Frosen, J., et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 35 (10), 2287-2293 (2004).
  41. Frosen, J., et al. Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery. 58 (3), 534-541 (2006).
check_url/kr/62518?article_type=t

Play Video

Cite This Article
Boillat, G., Franssen, T., Grüter, B., Wanderer, S., Catalano, K., Casoni, D., Andereggen, L., Marbacher, S. Creation of Two Saccular Elastase-Digested Aneurysms with Different Hemodynamics in One Rabbit. J. Vis. Exp. (170), e62518, doi:10.3791/62518 (2021).

View Video