Summary

Farvning af cytoplasmisk Ca2+ med Fluo-4/AM i Apple Pulp

Published: November 06, 2021
doi:

Summary

Isolerede protoplaster af æblemasseceller blev lastet med et calcium fluorescerende reagens for at detektere cytoplasmisk Ca2+-koncentration.

Abstract

Cytosolic Ca2+ spiller en central rolle i planteudvikling. Calcium imaging er den mest alsidige metode til at opdage dynamiske ændringer i Ca2 + i cytoplasmaet. I denne undersøgelse opnåede vi levedygtige protoplaster af pulpceller ved enzymatisk hydrolyse. Isolerede protoplaster blev inkuberet med det lille molekyle fluorescerende reagens (Fluo-4/AM) i 30 min ved 37 °C. De fluorescerende sonder med succes plettet cytosolic Ca2 +, men ikke ophobes i vakuoler. La3 +,en Ca2 + kanal blocker, nedsat cytoplasmisk fluorescens intensitet. Disse resultater tyder på, at Fluo-4/AM kan bruges til at opdage ændringer i cytosolic Ca2 + i frugtkødet. Sammenfattende præsenterer vi en metode til effektivt at isolere protoplaster fra kødceller af frugten og detektere Ca2 + ved at indlæse et lille molekyle calcium fluorescerende reagens i cytoplasmaet af pulpceller.

Introduction

Ca2+ spiller en vigtig rolle i plantesignaltransduktion og metabolisme1,2. Desuden regulerer den frugtkvalitetsegenskaber3,4, herunder hårdhed, sukkerindhold og modtagelighed for fysiologiske lidelser under opbevaring5,6. Cytoplasmisk Ca2+ spiller en vigtig rolle i signaltransduktion og regulerer plantevækst og -udvikling7. Forstyrrelse af cellulær calcium homøostase kan fremkalde bitter pit i æbler8, brun pletsygdom i pærer9og navle råddenskab i tomater10, påvirker frugtkvaliteten og forårsager alvorlige økonomiske tab3,11. Calciumbilleddannelse har tilstrækkelig rumlig og tidsmæssig opløsning og er en vigtig metode til at observere Ca2+-dynamik i levende celler12,13.

På nuværende tidspunkt er der to hovedmetoder til intracellulær calciumbilleddannelse i levende celler: den ene anvender kemiske små molekylære fluorescerende sonder14, og den anden er genkodningssensoren (GECI)15,16. I betragtning af vanskeligheden ved at etablere et stabilt transgent system i frugttræer og længere frugtudvikling er GECIS uegnet til frugt Ca2+ fluorescensbilleddannelse.

Små-molekyle fluorescerende sonder såsom Fluo-4/AM har en særlig fordel: deres AM ester form (celle-permeable acetoxymethyl ester derivat) kan let bulk-læsset i levende celler uden behov for transfection, hvilket gør det fleksibelt, hurtig og ikke-cytotoksisk17. Fluo-4/AM kunne med succes lastes i pollen rør af Pyrus pyrifolia18 og Petunia,19 samt i vagtceller20 og rod hår arabidopsis21.

På nuværende tidspunkt er der få rapporter om calcium fluorescens farvning af papirmasse celler22. Som et vigtigt mineralelement spiller calcium en central rolle i væksten og kvalitetskontrol af træfrugter som æbler. Æbletræer er globalt anerkendt som en vigtig økonomisk art, og æbler betragtes som en sund mad23. I denne undersøgelse opnåede vi levedygtige protoplaster fra æblefrugtmasse gennem enzymatisk hydrolyse og læssede derefter småmolekyler fluorescerende reagenser i cytoplasmaet for at opdage Ca2+.

Protocol

1. Protoplastudvinding Den grundlæggende opløsning forberedes: 20 mM CaCl2, 5 mM 2-(N-morpholino)ethanesulfonsyre og 0,4 M D-sorbitol.BEMÆRK: Basisopløsningens pH-fejl blev justeret til 5,8 med 0,1 M Tris buffer, filtreret gennem 0,22 μm vandopløselige filtre og opbevaret ved 4 °C. Forbered den enzymatiske løsning: Bland 0,3% (w/v) Macerozyme R-10 og 0,5% (w/v) cellulase R-10 med basisopløsningen. Der tilsættes 0,5 mL enzymatisk opløsning i et 1,5 m…

Representative Results

Efter den ovenfor beskrevne protokol brugte vi enzymatisk metode til at opnå levedygtige protoplaster fra pulpen (Figur 1). Nogle protoplaster havde vakuoler, mens andre ikke gjorde. Mens protoplasterne udviste ingen fluorescens, når Ca2 + fluorescerende indikator ikke blev indlæst i dem. Når Fluo-4/AM blev læsset i protoplasterne, cytoplasma, men ikke vakuol, blev fluorescerende (Figur 2). Dette resultat viste, at Fluo-4/AM med succes farvede Ca…

Discussion

I denne undersøgelse blev levedygtige protoplaster opnået ved enzymatisk hydrolyse. Bemærk, at denne metode kræver friske æbler. Denne protokol giver mulighed for hurtig isolering af et stort antal protoplaster fra frugtmasse til brug i forskningsundersøgelser. Anvendelsen af denne metode er ikke begrænset til »Fuji«. protoplasterne på æblemassen af »Dounan« og »Honey Crisp« kan også udvindes ved samme protokol (supplerende figur S4). Protoplastopløsningen efter enzymolyse indeholder cel…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af Agricultural Variety Improvement Project i Shandong-provinsen (2019LZGC007) og Fruit tree innovation team af Shandong moderne landbrugsindustri teknologisystem (SDAIT-06-05).

Materials

10× phosphate-buffered saline Solarbio P1022 PBS (phosphate buffered solution) is a phosphate buffer solution, which can provide a relatively stable ionic environment and pH buffering capacity. It is a buffer salt solution often used in biology for molecular cloning and cell culture. The pH is 7.4. 
2-(N-morpholino)ethanesulfonic acid Solarbio M8010 Biological buffer
CaCl2·2H2O Solarbio C8370 Calcium chloride dihydrate is a white or gray chemical, mostly in granular form.
Cellulase R-10 Yakult Honsha MX7352 Degrade plant cell walls.
D-sorbitol Solarbio S8090 It has good moisturizing properties, prevents drying, and prevents sugar, salt, etc. from crystallizing.
F-127 Thermo Fisher Scientific P6867 Pluronic F-127 is a non-ionic, surfactant polyol (molecular weight of approximately 12500 Daltons), which has been found to be beneficial to promote the dissolution of water-insoluble dyes and other materials in physiological media. 
FDA Thermo Fisher Scientific F1303 FDA is a cell-permeant esterase substrate that can serve as a viability probe that measures both enzymatic activity, which is require to activate its fluorescence, and cell-membrane integrity, which is required for intracellular retention of their fluorescent product. 
Fluo-4/AM Thermo Fisher Scientific F14201 The green fluorescent calcium indicator Fluo-4/AM is an improved version of the calcium indicator Fluo-3/AM. The Fluo-4/AM loads faster and is brighter at the same concentration. It can be well excited with a 488 nm argon ion laser.
Fluorescence microscope Thermo Fisher EVOS Auto 2 Observe the fluorescence image.
Macerozyme R-10 Yakult Honsha MX7351 Degrade plant tissue to separate single cells.
Tris Solarbio T8060 It is widely used in the preparation of buffers in biochemistry and molecular biology experiments.

References

  1. Hocking, B., Tyerman, S. D., Burton, R. A., Gilliham, M. Fruit calcium: Transport and physiology. Frontiers in Plant Science. 7, 569 (2016).
  2. Li, J., Yang, H. -. q., Yan, T. -. l., Shu, H. -. r. Effect of indole butyric acid on the transportation of stored calcium in Malus hupehensis rhed. Seedling. Agricultural Sciences in China. 5 (11), 834-838 (2006).
  3. Gao, Q., Xiong, T., Li, X., Chen, W., Zhu, X. Calcium and calcium sensors in fruit development and ripening. Scientia Horticulturae. 253, 412-421 (2019).
  4. Barrett, D. M., Beaulieu, J. C., Shewfelt, R. L. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition. 50 (5), 369-389 (2010).
  5. Deell, J. R., Khanizadeh, S., Saad, F., Ferree, D. C. Factors affecting apple fruit firmness–a review. Journal- American Pomological Society. 55 (1), 8-27 (2001).
  6. Johnston, J., Hewett, E., Hertog, M. A. T. M. Postharvest softening of apple (Malus domestica) fruit: A review. New Zealand Journal of Experimental Agriculture. 30 (3), 145-160 (2002).
  7. Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T. A., Pottosin, I. Calcium transport across plant membranes: mechanisms and functions. New Phytologist. 220 (1), 49-69 (2018).
  8. Miqueloto, A., et al. Mechanisms regulating fruit calcium content and susceptibility to bitter pit in cultivars of apple. Acta horticulturae. 1194 (1194), 469-474 (2018).
  9. Kou, X., et al. Effects of CaCl2 dipping and pullulan coating on the development of brown spot on ‘Huangguan’ pears during cold storage. Postharvest Biology and Technology. 99, 63-72 (2015).
  10. Vinh, T. D., et al. Comparative analysis on blossom-end rot incidence in two tomato cultivars in relation to calcium nutrition and fruit growth. The Horticulture Journal. 87 (1), 97-105 (2018).
  11. Yamane, T. Foliar calcium applications for controlling fruit disorders and storage life in deciduous fruit trees. Japan Agricultural Research Quarterly. 48 (1), 29-33 (2014).
  12. Grienberger, C., Konnerth, A. Imaging calcium in neurons. Neuron. 73 (5), 862-885 (2012).
  13. Bootman, M. D., Rietdorf, K., Collins, T. J., Walker, S., Sanderson, M. J. Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. CSH Protocols. 2013 (2), 83 (2013).
  14. Hirabayashi, K., et al. Development of practical red fluorescent probe for cytoplasmic calcium ions with greatly improved cell-membrane permeability. Cell Calcium. 60 (4), 256-265 (2016).
  15. Krebs, M., et al. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca(2)(+) dynamics. Plant Journal. 69 (1), 181-192 (2012).
  16. Zhao, Y., et al. An expanded palette of genetically encoded Ca(2)(+) indicators. Science. 333 (2), 1888-1891 (2011).
  17. Gee, K. R., et al. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium. 27 (2), 97-106 (2000).
  18. Qu, H., Xing, W., Wu, F., Wang, Y. Rapid and inexpensive method of loading fluorescent dye into pollen tubes and root hairs. PLoS One. 11, 0152320 (2016).
  19. Suwińska, A., Wasąg, P., Zakrzewski, P., Lenartowska, M., Lenartowski, R. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia. Planta. 245 (5), 909-926 (2017).
  20. Sun, L., et al. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H2O2, Ca2+ and nitric oxide in Arabidopsis guard cells. Plant Science. 262, 81-90 (2017).
  21. Niu, Y. F., et al. Magnesium availability regulates the development of root hairs in Arabidopsis thaliana (L.) Heynh. Plant Cell and Environment. 37 (12), 2795-2813 (2014).
  22. Qiu, L., Wang, Y., Qu, H. Loading calcium fluorescent probes into protoplasts to detect calcium in the flesh tissue cells of Malus domestica. Horticulture Research. 7, 91 (2020).
  23. Boyer, J., Liu, R. H. Apple phytochemicals and their health benefits. Nutrition Journal. 3 (1), 5 (2004).
  24. Takahashi, A., Camacho, P., Lechleiter, J. D., Herman, B. Measurement of intracellular calcium. Physiological Reviews. 79 (4), 1089-1125 (1999).
  25. Qu, H., Shang, Z., Zhang, S., Liu, L., Wu, J. Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytologist. 174 (3), 524-536 (2007).
  26. Hadjantonakis, A. K., Pisano, E., Papaioannou, V. E. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS One. 3 (6), 2511 (2008).
  27. DeSimone, J. A., et al. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli. Journal of Neurophysiology. 108 (12), 3206-3220 (2012).
  28. Kao, J. P., Harootunian, A. T., Tsien, R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. Journal of Biological Chemistry. 264 (14), 8179-8184 (1989).
  29. Merritt, J. E., Mccarthy, S. A., Davies, M., Moores, K. E. Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2. Biochemical Journal. 269 (2), 513-519 (1990).
  30. Li, W., et al. A comparative study on Ca content and distribution in two Gesneriaceae species reveals distinctive mechanisms to cope with high rhizospheric soluble calcium. Frontiers in Plant Science. 5 (5), 647 (2014).
  31. Zhang, W., Rengel, Z., Kuo, J. Determination of intracellular Ca2+ in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant Journal. 15 (1), 147-151 (1998).
  32. Qu, H., Jiang, X., Shi, Z., Liu, L., Zhang, S. Fast loading ester fluorescent Ca2+ and pH indicators into pollen of Pyrus pyrifolia. Journal of Plant Research. 125 (1), 185-195 (2012).
  33. Wang, Y., et al. Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis. root hairs. BMC Plant Biology. 10, 53 (2010).
  34. Fujimori, T., Jencks, W. P. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. Journal of Biological Chemistry. 265 (27), 16262-16270 (1990).

Play Video

Cite This Article
Qiu, L., Huang, D., Wang, Y., Qu, H. Staining the Cytoplasmic Ca2+ with Fluo-4/AM in Apple Pulp. J. Vis. Exp. (177), e62526, doi:10.3791/62526 (2021).

View Video