Summary

大鼠部分异位欣德利姆移植模型

Published: June 09, 2021
doi:

Summary

本文介绍了大鼠部分异位骨质皮瓣移植方案及其中期随访的潜在结果。

Abstract

血管化复合异位移植 (VCA) 是患者在复杂组织缺陷后没有自体手术可能性的最高级重建选项。脸部和手部移植改变了毁容患者的生活,赋予他们新的审美和功能社会器官。尽管结果大有希望,但由于终生免疫抑制合并症和传染性并发症,VCA仍然表现不佳。大鼠是研究免疫途径和移植排斥机制 的活体 研究的理想动物模型。大鼠还广泛应用于新型复合组织移植保存技术,包括灌注和低温保存研究。大鼠VCA的模型必须可重复、可靠和高效,术后发病率和死亡率较低。异位肢体移植程序符合这些标准,比矫肢移植更容易执行。掌握啮齿动物显微外科模型需要在显微外科和动物护理方面有扎实的经验。据报道,这是大鼠部分异位骨皮瓣移植、术后结果和预防潜在并发症的方法的可靠和可重复的模型。

Introduction

在过去的二十年里, VCA 已经发展成为一种革命性的治疗患者谁遭受严重毁容,包括脸部1 ,上肢截肢2 ,3 ,和其他复杂的组织缺陷4 , 5 。然而,终生免疫抑制的后果仍然阻碍这些复杂的重建手术的广泛应用。基础研究对于改进反排斥策略至关重要。增加VCA保存时间对于改善移植物流和增加捐赠者库也至关重要(因为VCA捐赠者必须比实体器官捐献者满足更多的标准,包括肤色、解剖大小、性别)。在此背景下,大鼠肢体移植被广泛应用于6、7、新耐受诱导方案8、保存研究9、10、11等免疫排斥的研究中。因此,这些 VCA 模型是 VCA 转化研究需要掌握的关键元素。

骨皮瓣在文献中被描述为研究8、12、13、14大鼠VCA的可靠模型。虽然正位全肢移植允许长期评估移植功能,但它是一个耗时的程序,与更高的术后发病率和死亡率14。相比之下,异位肢体移植模型是非功能性的,但能够对VCA进行可重复的研究。在开始大鼠VCA移植研究之前,可以可靠地预测术后的结果。本研究报告了大鼠的部分异位骨质皮瓣移植模型,其中包括在三周的随访期内可能出现的频繁可能的结果和术后并发症。

Protocol

所有动物都根据《国家卫生研究院护理和使用实验室动物指南》得到人道护理。机构动物护理和使用委员会(IACUC-协议2017N000184)和动物护理和使用审查办公室(ACURO)批准了所有动物协议。近亲繁殖的雄性刘易斯大鼠(250-400克)用于所有实验。 1. 手术 使用异黄素吸入麻醉刘易斯大鼠。诱导感应室中5%异黄素的麻醉,通过呼吸锥体保持1.5-3%异黄酮吸入麻醉。 手…

Representative Results

在这项单操作者研究中,进行了30例同步异位部分肢体移植。成功定义为术后第21天没有VCA失败或需要安乐死的并发症。移植物的正常演变表现在图3中。接受者部分肢体采购和移植插入的平均持续时间分别为35分钟和105分钟:平均缺血时间是105分钟。在随访过程中,发生两种类型的并发症(表1)早或晚。有的需要安乐死,有的需要抢救,都与兽医人员讨论过(<st…

Discussion

在文献15、16、17中描述了啮齿动物的矫肢移植模型:然而,他们需要神经修复,肌肉重新连接,和完美的骨合成股骨,这可能是一个非常困难的步骤。这些模型也与14号啮齿动物的发病率和死亡率较高有关,特别是在短期随访中,因为移植后肢的正常功能的恢复可能需要几个月的时间。然而?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了助理国防部长办公室的支持,通过国会指导的医学研究计划,根据第一奖。W81XWH-17-1-0680。意见、解释、结论和建议是作者的意见,不一定得到国防部的赞同。

Materials

24 GA angiocatheter BD Insyte Autoguard 381412
4-0 suture Black monofilament non absorbable suture Ethicon 1667 Used to suture the E-collar to the back of the neck
4-0 suture Coated Vicryl Plus Antibacterial Ethicon VCP496
Adson Tissue Forceps, 11 cm, 1 x 2 Teeth with Tying Platform ASSI ASSI.ATK26426
Bipolar cords ASSI 228000C
Black Polyamide Monofilament USP 10-0, 4 mm 3/8c AROSurgical T04A10N07-13 Used to perform the microvascular anastomoses
Buprenorphine HCl Pharmaceutical, Inc 42023-179-01
Dilating Forceps Fine science tools (FST) 18131-12
Dissecting Scissors 15 cm, Round Handle 8 mm diameter, Straight Slender Tapered Blade 7 mm, Lipshultz Pattern ASSI ASSI.SAS15RVL
Double Micro Clamps 5.5 x 1.5 mm Fine science tools (FST) 18040-22
Elizabethan collar Braintree Scientific EC-R1
Forceps 13.5 cm long, Flat Handle, 9 mm wide Straight Tips 0.1 mm diameter (x2) ASSI ASSI.JFL31
Halsey Micro Needle Holder Fine science tools (FST) 12500-12
Heparin Lock Flush Solution, USP, 100 units/mL BD PosiFlush 306424
Isoflurane Patterson Veterinary 14043-704-06
Jewelers Bipolar Forceps Non Stick 11 cm, straight pointed tip, 0.25 mm tip diameter ASSI ASSI.BPNS11223
Lone Star Elastic Stays CooperSurgical 3314-8G Used to retract the inguinal ligament for femoral vessels dissection
Lone Star Self-Retaining Retractors CooperSurgical 3301G
Micro-Mosquito Hemostats Fine science tools (FST) 13010-12 Used to retract the inguinal fat pad distally
Needle Holder, 15 cm Round Handle, 8 mm diameter, Superfine Curved Jaw 0.2 mm tip diameter, without lock ASSI ASSI.B1582
Nylon Suture Black Monolfilament 8-0, 6.5 mm 3/8c Ethilon 2808G Used to ligate collateral branches on the femoral vessels
Offset Bone Nippers Fine science tools (FST) 16101-10
S&T Vascular Clamps 5.5 x 1.5 mm Fine science tools (FST) 00398-02
Walton scissors Fine science tools (FST) 14077-09

References

  1. Lanteiri, L., et al. Feasibility, reproducibility, risks and benefits of face transplantation: a prospective study of outcomes. American Journal of Transplantation. 11 (2), 367-378 (2011).
  2. Park, S. H., Eun, S. C., Kwon, S. T. Hand transplantation: current status and immunologic obstacles. Experimental and Clinical Transplantation. 17 (1), 97-104 (2019).
  3. Cetrulo, C. L., et al. Penis transplantation: first US experience. Annals of Surgery. 267 (5), 983-988 (2018).
  4. Grajek, M., et al. First complex allotransplantation of neck organs: larynx, trachea, pharynx, esophagus, thyroid, parathyroid glands, and anterior cervical wall: a case report. Annals of Surgery. 266 (2), 19-24 (2017).
  5. Pribaz, J. J., Caterson, E. J. Evolution and limitations of conventional autologous reconstruction of the head and neck. Journal of Craniofacial Surgery. 24 (1), 99-107 (2013).
  6. Lipson, R. A., et al. Vascularized limb transplantation in the rat. I. Results with syngeneic grafts. Transplantation. 35 (4), 293-299 (1983).
  7. Lipson, R. A., et al. Vascularized limb transplantation in the rat. II. Results with allogeneic grafts. Transplantation. 35 (4), 300-304 (1983).
  8. Adamson, L. A., et al. A modified model of hindlimb osteomyocutaneous flap for the study of tolerance to composite tissue allografts. Microsurgery. 27 (7), 630-636 (2007).
  9. Arav, A., Friedman, O., Natan, Y., Gur, E., Shani, N. Rat hindlimb cryopreservation and transplantation: a step toward “organ banking”. American Journal of Transplantation. 17 (11), 2820-2828 (2017).
  10. Gok, E., et al. Development of an ex-situ limb perfusion system for a rodent model. ASAIO Journal. 65 (2), 167-172 (2019).
  11. Gok, E., Rojas-Pena, A., Bartlett, R. H., Ozer, K. Rodent skeletal muscle metabolomic changes associated with static cold storage. Transplantation Proceedings. 51 (3), 979-986 (2019).
  12. Brandacher, G., Grahammer, J., Sucher, R., Lee, W. P. Animal models for basic and translational research in reconstructive transplantation. Birth Defects Research. Part C, Embryo Today. 96 (1), 39-50 (2012).
  13. Fleissig, Y., et al. Modified heterotopic hindlimb osteomyocutaneous flap model in the rat for translational vascularized composite allotransplantation research. Journal of Visualized Experiments: JoVE. (146), e59458 (2019).
  14. Ulusal, A. E., Ulusal, B. G., Hung, L. M., Wei, F. C. Heterotopic hindlimb allotransplantation in rats: an alternative model for immunological research in composite-tissue allotransplantation. Microsurgery. 25 (5), 410-414 (2005).
  15. Jang, Y., Park, Y. E., Yun, C. W., Kim, D. H., Chung, H. The vest-collar as a rodent collar to prevent licking and scratching during experiments. Lab Anim. 50 (4), 296-304 (2016).
  16. Kern, B., et al. A novel rodent orthotopic forelimb transplantation model that allows for reliable assessment of functional recovery resulting from nerve regeneration. American Journal of Transplantation. 17 (3), 622-634 (2017).
  17. Perez-Abadia, G., et al. Low-dose immunosuppression in a rat hind-limb transplantation model. Transplant International. 16 (12), 835-842 (2003).
  18. Sucher, R., et al. Orthotopic hind-limb transplantation in rats. Journal of Visualized Experiments. (41), e2022 (2010).
  19. Fleissig, Y. Y., Beare, J. E., LeBlanc, A. J., Kaufman, C. L. Evolution of the rat hind limb transplant as an experimental model of vascularized composite allotransplantation: Approaches and advantages. SAGE Open Medicine. 8, 2050312120968721 (2020).
  20. Lindboe, C. F., Presthus, J. Effects of denervation, immobilization and cachexia on fibre size in the anterior tibial muscle of the rat. Acta Neuropathologica. 66 (1), 42-51 (1985).
  21. Nazzal, J. A., Johnson, T. S., Gordon, C. R., Randolph, M. A., Lee, W. P. Heterotopic limb allotransplantation model to study skin rejection in the rat. Microsurgery. 24 (6), 448-453 (2004).
check_url/kr/62586?article_type=t

Play Video

Cite This Article
Goutard, M., Randolph, M. A., Taveau, C. B., Lupon, E., Lantieri, L., Uygun, K., Cetrulo Jr., C. L., Lellouch, A. G. Partial Heterotopic Hindlimb Transplantation Model in Rats. J. Vis. Exp. (172), e62586, doi:10.3791/62586 (2021).

View Video