Summary

Un modèle de tranche cérébrale ex vivo pour étudier et cibler la croissance tumorale métastatique du cancer du sein

Published: September 22, 2021
doi:

Summary

Nous introduisons un protocole pour mesurer en temps réel la réponse médicamenteuse et radiologique des cellules métastatiques du cerveau du cancer du sein dans un modèle organotypique de tranches cérébrales. Les méthodes fournissent un test quantitatif pour étudier les effets thérapeutiques de divers traitements sur les métastases cérébrales du cancer du sein de manière ex vivo dans l’interface du microenvironnement cérébral.

Abstract

Les métastases cérébrales sont une conséquence grave du cancer du sein chez les femmes, car ces tumeurs sont difficiles à traiter et sont associées à de mauvais résultats cliniques. Les modèles murins précliniques de croissance métastatique du cerveau du cancer du sein (BCBM) sont utiles mais coûteux, et il est difficile de suivre les cellules vivantes et l’invasion des cellules tumorales dans le parenchyme cérébral. Présenté ici est un protocole pour les cultures de tranches de cerveau ex vivo de souris xénogreffées contenant des sous-lignées clonales de cancer du sein injectées par voie intracrânienne. Les cellules marquées par la luciférase MDA-MB-231BR ont été injectées par voie intracrânienne dans le cerveau de souris femelles Nu / Nu, et après la formation de tumeurs, les cerveaux ont été isolés, tranchés et cultivés ex vivo. Les tranches tumorales ont été imagées pour identifier les cellules tumorales exprimant la luciférase et surveiller leur prolifération et leur invasion dans le parenchyme cérébral pendant 10 jours. En outre, le protocole décrit l’utilisation de la microscopie time-lapse pour imager la croissance et le comportement invasif des cellules tumorales après un traitement par rayonnement ionisant ou chimiothérapie. La réponse des cellules tumorales aux traitements peut être visualisée par microscopie d’imagerie en direct, en mesurant l’intensité de la bioluminescence et en effectuant une histologie sur la tranche de cerveau contenant des cellules BCBM. Ainsi, ce modèle de tranche ex vivo peut être une plate-forme utile pour tester rapidement de nouveaux agents thérapeutiques seuls ou en combinaison avec des radiations afin d’identifier des médicaments personnalisés pour cibler la croissance métastatique du cerveau du cancer du sein d’une patiente individuelle dans le microenvironnement cérébral.

Introduction

Les métastases cérébrales du cancer du sein (BCBM) se développent lorsque les cellules se propagent de la tumeur mammaire primaire au cerveau. Le cancer du sein est la deuxième cause la plus fréquente de métastases cérébrales après le cancer du poumon, avec des métastases survenant chez 10 à 16% des patientes1. Malheureusement, les métastases cérébrales restent incurables car >80% des patients meurent dans l’année suivant leur diagnostic de métastases cérébrales et leur qualité de vie est altérée en raison de dysfonctionnements neurologiques2. Il est urgent d’identifier des options de traitement plus efficaces. Les modèles de culture monocouches bidimensionnelles ou tridimensionnelles sont les méthodes les plus couramment utilisées pour tester les agents thérapeutiques en laboratoire. Cependant, ils n’imitent pas le microenvironnement complexe BCBM, un moteur majeur du phénotype et de la croissance de la tumeur. Bien que ces modèles soient utiles, ils ne capturent pas les interactions complexes tumeur-stromale, les besoins métaboliques uniques et l’hétérogénéité des tumeurs3. Pour récapituler plus fidèlement les interactions tumeur-stromale et l’hétérogénéité du microenvironnement, notre groupe et d’autres ont commencé à générer des cultures de métastases cérébrales organotypiques en « tranches » avec des cellules tumorales dérivées du patient (primaires ou métastatiques) ou des lignées cellulaires cancéreuses 4,5,6. Comparé aux systèmes in vitro classiques, ce modèle ex vivo à court terme peut fournir des conditions plus pertinentes pour le dépistage de nouveaux traitements avant l’évaluation préclinique dans les grandes cohortes d’animaux.

Des modèles ex vivo ont été construits et utilisés avec succès principalement pour l’identification de traitements efficaces de divers cancers. Ils nécessitent quelques jours d’évaluation et peuvent en outre être adaptés au dépistage de médicaments spécifiques au patient. Par exemple, les tissus ex vivo du cancer de la vessie et de la prostate humains ont montré une réponse antitumorale dose-dépendante du docétaxel et de la gemcitabine7. Des tissus ex vivo similaires au carcinome colorectal ont été développés pour dépister les médicaments chimiothérapeutiques Oxaliplatin, Cetuximab et Pembrolizumab8. Cette application a été largement utilisée dans le cancer du pancréas, compte tenu de l’interaction essentielle entre l’environnement stromal et les caractéristiques génotypiques et phénotypiques de l’adénocarcinome canalaire pancréatique 9,10. En outre, de tels modèles organotypiques ont été développés pour des dépistages similaires dans les tumeurs de la tête, du cou, de l’estomac et du sein11,12.

Ici, un modèle de tranche de cerveau ex vivo de cellules tumorales métastatiques du cancer du sein xénogreffées dans leur microenvironnement est généré. Des souris ont été injectées par voie intracrânienne avec des cellules MDA-MB-231BR trophiques métastatiques du cerveau du cancer du sein13 dans le lobe pariétal du cortex cérébral – un site commun de métastases du CSTN14,15 et ont permis de développer des tumeurs. Des tranches de cerveau ont été générées à partir de ces animaux xénogreffés et maintenues ex vivo sous forme de cultures organotypiques comme décrit16,17. Ce nouveau modèle ex vivo permet d’analyser la croissance des cellules BCBM dans le parenchyme cérébral et peut être utilisé pour tester les agents thérapeutiques et les effets des radiations sur les cellules tumorales dans le microenvironnement cérébral.

Protocol

Ce protocole a été approuvé et suit les directives de soins aux animaux par le Drexel University College of Medicine Institutional Animal Care and Use Committee (IACUC). Des souris femelles athymiques Nu/Nu (âgées de 6 à 8 semaines) ont été utilisées dans cette étude. 1. Injection intracrânienne de cellules tumorales Stériliser tout l’équipement (pince à épiler, ciseaux, ciseaux de suture, perceuse à main) sous un cycle sec d’un autoclave jusqu’à 45 min dans de…

Representative Results

Les cellules MDA-MB-231BR-GFP-Luciférase ont été injectées par voie intracrânienne dans l’hémisphère droit de souris Nu/Nu âgées de 4 à 6 semaines, comme expliqué ci-dessus (Figure 1A) et ont été autorisées à se développer pendant 12 à 14 jours, période pendant laquelle la croissance tumorale a été surveillée par imagerie par bioluminescence (Figure 1B). Nous avons injecté 100 000 cellules cancéreuses par voie intracrânienne, comme l’…

Discussion

Cette étude établit une nouvelle méthode de culture cérébrale ex vivo pour les tumeurs cérébrales explantées de xénogreffes. Nous montrons que les cellules BCBM MDA-MB-231BR injectées par voie intracrânienne dans le cerveau de souris peuvent survivre et se développer dans des tranches de cerveau ex vivo . L’étude a également testé des cellules de glioblastome U87MG (GBM) injectées par voie intracrânienne et a également constaté que ces cellules cancéreuses survivent et se développ…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Nous tenons à remercier Julia Farnan, Kayla Green et Tiziana DeAngelis pour leur assistance technique. Ce travail a été soutenu en partie par le Pennsylvania Commonwealth Universal Research Enhancement Grant Program (MJR, JGJ), UO1CA244303 (MJR), R01CA227479 (NLS), R00CA207855 (EJH) et W.W. Smith Charitable Trusts (EjH).

Materials

1 mL syringe, slip tip BD 309659
30 G1/2 Needles BD 305106
6-well plates Genessee 25-105
Automated microscope and LUMAVIEW software Etaluma LS720
B27 (GEM21) Gemini Bio-Products 400-160
Beaker 50 mL Fisher 10-210-685
Blunt sable paintbrush, Size #5/0 Electron Microscopy Sciences 66100-50
Bone Wax ModoMed DYNJBW25
Brain injection Syringe Hamilton Company 80430
CaCl2 Fisher Scientific BP510-250
Cleaved caspase 3 Antibody Cell Signaling 14220S
DAPI Invitrogen P36935
D-Luciferin Potassium Salt Perkin Elmer 122799
Double edge razor blade VWR 55411-060(95-0043)
Filter Paper (#1), quantitative circles, 4.25 cm Fisher 09-805a (1001-042)
Fine sable paintbrush #2/0 Electron Microscopy Sciences 66100-20
Forceps Fine Science Tools 11251-20
Gamma-H2AX antibody Millipore 05-636
GFAP antibody Thermo Fisher 13-0300
GFP antibody Santa Cruz SC-9996
Glucose Sigma Aldrich G8270
Glutamine (200 mM) Corning cellgrow 25-005-Cl
H&E and KI-67 Jefferson Core Facility Pathology staining
Hand Drill Set with Micro Mini Twist Drill Bits Amazon YCQ2851920086082DJ
HEPES, free acid Fisher Scientific BP299-1
Just for mice Stereotaxic Frame Harvard Apparatus (Holliston, MA, USA). 72-6049, 72-6044
KCl Fisher Scientific S271-10
Large surgical scissors Fine Science Tools 14001-18
MDA-MB-231BR cells Kindly provided by Dr. Patricia Steeg Ref 14
MgCl2·6H2O Fisher Scientific M33-500
Mice imaging device Perkin Elmer IVIS 200 system
Mice imaging software Caliper Life Sciences (Waltham, MA, USA). Living Image Software
Microplate Reader Tecan Spark
Mounting solution Invitrogen P36935
MTS reagent Promega CellTiter 96 Aqueous One Solution (Cat:G3582)
N2 supplement Life Technologies 17502-048
Neurobasal medium Life Technologies 21103049
Nu/Nu athymic mice Charles Rivers Labs (Wilmington, MA, USA)
Paraformaldehyde Affymetrix 19943
Pen/Strep Life Technologies 145140-122
Polypropylene Suture Medex supply ETH-8556H
Povidone Iodine Swab sticks DME Supply USA Cat: 689286X
Scalpel blade #11 (pk of 100) Fine Science Tools 10011-00
Scalpel handle #3 Fine Science Tools 10003-12
Sodium Pyruvate Sigma Aldrich S8636
Spatula/probe Fine Science Tools 10090-13
SS Double edge uncoated razor blades (American safety razor co (95-0043)) VWR 55411-060
Sucrose Amresco 57-50-1
Surgical Scalpel Exelint International D29702
Tissue Chopper Brinkman (McIlwain type)
Tissue culture inserts Millipore PICMORG50 or PICM03050
X-ray machine Precision 250 kVp

References

  1. Watase, C., et al. Breast cancer brain metastasis-overview of disease state, treatment options and future perspectives. Cancers. 13 (5), (2021).
  2. Niikura, N., et al. Treatment outcomes and prognostic factors for patients with brain metastases from breast cancer of each subtype: a multicenter retrospective analysis. Breast Cancer Research and Treatment. 147 (1), 103-112 (2014).
  3. Fong, E. L., et al. Heralding a new paradigm in 3D tumor modeling. Biomaterials. 108, 197-213 (2016).
  4. Parker, J. J., et al. A human glioblastoma organotypic slice culture model for study of tumor cell migration and patient-specific effects of anti-invasive drugs. Journal of Visualized Experiments: JoVE. (125), e53557 (2017).
  5. Chuang, H. N., et al. Coculture system with an organotypic brain slice and 3D spheroid of carcinoma cells. Journal of Visualized Experiments: JoVE. (80), e50881 (2013).
  6. Hohensee, I., et al. PTEN mediates the cross talk between breast and glial cells in brain metastases leading to rapid disease progression. Oncotarget. 8 (4), 6155-6168 (2017).
  7. van de Merbel, A. F., et al. An ex vivo Tissue culture model for the assessment of individualized drug responses in prostate and bladder cancer. Frontiers in Oncology. 8, 400 (2018).
  8. Martin, S. Z., et al. Ex vivo tissue slice culture system to measure drug-response rates of hepatic metastatic colorectal cancer. BMC Cancer. 19 (1), 1030 (2019).
  9. Orimo, A., Weinberg, R. A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 5 (15), 1597-1601 (2006).
  10. Lim, C. Y., et al. Organotypic slice cultures of pancreatic ductal adenocarcinoma preserve the tumor microenvironment and provide a platform for drug response. Pancreatology. 18 (8), 913-927 (2018).
  11. Gerlach, M. M., et al. Slice cultures from head and neck squamous cell carcinoma: a novel test system for drug susceptibility and mechanisms of resistance. British Journal of Cancer. 110 (2), 479-488 (2014).
  12. Koerfer, J., et al. Organotypic slice cultures of human gastric and esophagogastric junction cancer. Cancer Medicine. 5 (7), 1444-1453 (2016).
  13. Palmieri, D., et al. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. 암 연구학. 67 (9), 4190-4198 (2007).
  14. Kyeong, S., et al. Subtypes of breast cancer show different spatial distributions of brain metastases. PLoS One. 12 (11), 0188542 (2017).
  15. Hengel, K., et al. Attributes of brain metastases from breast and lung cancer. International Journal of Clinical Oncology. 18 (3), 396-401 (2013).
  16. Jackson, J. G., et al. Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes and position mitochondria near glutamate transporters. Journal of Neuroscience. 34 (5), 1613-1624 (2014).
  17. Farnan, J. K., Green, K. K., Jackson, J. G. Ex vivo imaging of mitochondrial dynamics and trafficking in astrocytes. Current Protocols in Neuroscience. 92 (1), 94 (2020).
  18. Simone, N. L., et al. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One. 4 (7), 6377 (2009).
  19. Couturier, C. P., et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nature Communications. 11 (1), 3406 (2020).
  20. Candolfi, M., et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. Journal of Neuro-Oncology. 85 (2), 133-148 (2007).
  21. Fitzgerald, D. P., et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clinical & Experimental Metastasis. 25 (7), 799-810 (2008).
  22. Kondru, N., et al. An Ex Vivo Brain Slice Culture Model of Chronic Wasting Disease: Implications for Disease Pathogenesis and Therapeutic Development. Scientific Reports. 10 (1), (2020).
  23. Abu Samaan, T. M., et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 9 (12), (2019).
  24. Mewes, A., Franke, H., Singer, D. Organotypic brain slice cultures of adult transgenic P301S mice–a model for tauopathy studies. PLoS One. 7 (9), 45017 (2012).
  25. Valiente, M., et al. Brain metastasis cell lines panel: A public resource of organotropic cell lines. 암 연구학. 80 (20), 4314-4323 (2020).

Play Video

Cite This Article
Ciraku, L., Moeller, R. A., Esquea, E. M., Gocal, W. A., Hartsough, E. J., Simone, N. L., Jackson, J. G., Reginato, M. J. An Ex Vivo Brain Slice Model to Study and Target Breast Cancer Brain Metastatic Tumor Growth. J. Vis. Exp. (175), e62617, doi:10.3791/62617 (2021).

View Video