Summary

用于工程神经样组织的小鼠皮质星形胶质细胞的3D生物打印

Published: July 16, 2021
doi:

Summary

在这里,我们报道了一种3D生物打印小鼠皮质星形胶质细胞的方法,用于生物制造神经样组织,以研究星形胶质细胞在中枢神经系统中的功能以及涉及神经胶质细胞在神经系统疾病和治疗中的机制。

Abstract

星形胶质细胞是神经胶质细胞,在中枢神经系统(CNS)中起着至关重要的作用,包括神经元的支持和功能。这些细胞也对神经损伤有反应,并保护组织免受退行性事件的影响。星形胶质细胞功能的 体外 研究对于阐明此类事件所涉及的机制并有助于开发治疗神经系统疾病的疗法非常重要。该协议描述了一种通过3D生物打印含有星形胶质细胞的生物墨水生物制造富含星形胶质细胞的神经样组织结构的方法。在这项工作中使用了基于挤出的3D生物打印机,并从C57Bl / 6小鼠幼崽的脑皮质层中提取星形胶质细胞。通过将皮质星形胶质细胞从第3代混合到由明胶,明胶 – 甲基丙烯酰(GelMA)和纤维蛋白原组成的生物材料溶液中,并补充层粘连蛋白来制备生物墨水,其提供了最佳的生物打印条件。3D生物打印条件最大限度地减少了细胞应激,有助于星形胶质细胞在此过程中的高活力,其中74.08%±1.33%的细胞在生物打印后立即存活。孵育1周后,星形胶质细胞的活力显着增加到83.54%±3.00%,表明3D构建体代表了适合细胞生长的微环境。生物材料组成允许细胞附着并刺激星形细胞行为,细胞表达特定的星形胶质细胞标志物神经胶质纤维酸性蛋白(GFAP)并具有典型的星形细胞形态。这种可重复的方案提供了一种有价值的方法来生物制造富含星形胶质细胞的3D神经样组织,类似于细胞的天然微环境,对于旨在了解星形胶质细胞的功能及其与神经系统疾病中涉及的机制的关系的研究人员很有用。

Introduction

星形胶质细胞是中枢神经系统(CNS)中最丰富的细胞类型,在大脑稳态中起着关键作用。除了持久的神经元支持外,星形胶质细胞还负责调节神经递质摄取,维持血脑屏障完整性,并调节神经元突触发生1,2。星形胶质细胞在中枢神经系统炎症中也具有重要作用,在导致星体反应性或反应性星形胶质细胞增多症3,4的过程中对大脑损伤作出反应形成神经胶质疤痕,阻止健康组织暴露于退行性因子5。该事件导致星形胶质细胞的基因表达,形态和功能的变化6,7。因此,涉及星形胶质细胞功能的研究有助于开发治疗神经系统疾病的疗法。

体外 模型对于研究与神经损伤相关的机制至关重要,尽管已经建立了成功的皮质星形胶质细胞的分离和二维(2D)培养8,但该模型未能提供模拟天然细胞行为的现实环境并重现大脑的复杂性9.在2D条件下,较差的机械和生化支持,低细胞 – 细胞和细胞 – 基质相互作用以及细胞扁平化导致基底 – 顶端极性缺失,影响细胞信号传导动力学和实验结果,导致细胞形态和基因表达改变,从而损害对治疗的反应10。因此,开发提供更逼真的神经环境的替代方案至关重要,旨在将结果转化为临床。

三维(3D)细胞培养代表了一种更先进的模型,该模型概括了器官和组织(包括CNS11)的保真度增加的特征。关于神经胶质培养,3D模型有助于维持星形胶质细胞形态,细胞基底 – 顶端极性和细胞信号传导12,13。3D生物打印技术成为一种强大的工具,通过使用细胞和生物材料重建天然组织的结构和性质,以受控的方式生物制造3D活组织。该技术的使用导致了结果预测的实质性改进,并有助于再生医学应用于CNS14,15,16。

这里描述的方案详细介绍了皮质星形胶质细胞的分离和培养。该协议还详细介绍了一种可重复的方法,用于生物打印嵌入明胶/明胶甲基丙烯酰(GelMA)/纤维蛋白原中的星形胶质细胞,并补充层粘连蛋白。在这项工作中,使用基于挤出的生物打印机以1×106个细胞/ mL的密度打印含有皮质星形胶质细胞的生物材料组合物。通过控制打印速度将生物打印剪切应力降至最低,并且星形胶质细胞在该过程后显示出高活力。生物打印构建体培养1周,星形胶质细胞能够在水凝胶内扩散,附着和存活,维持星形细胞形态并表达特异性标志物胶质纤维酸性蛋白(GFAP)4 。

该程序与活塞驱动的基于挤出的生物打印机兼容,可用于生物打印来自不同来源的星形胶质细胞。这里提出的3D生物打印模型适用于广泛的神经工程应用,例如研究健康组织中星形胶质细胞功能所涉及的机制以及了解神经病理学的进展和治疗发展。

Protocol

所有涉及动物的程序都遵循国际动物在研究中使用的指导方针(http://www.iclas.org),并得到圣保罗联邦大学研究伦理委员会(CEUA 2019 / 9292090519)的批准。 1. 小鼠脑部解剖 将 10 mL 冷汉克斯缓冲盐溶液 (HBSS) 转移到 100 mm 培养皿中,将 1 mL 转移到 1.5 mL 微管中。每只动物准备一个微管。注意:培养皿和微管都需要保持在冰上。 使用DMEM F12 + 10%胎牛血清(FBS)?…

Representative Results

这项工作旨在使用3D生物打印技术开发一种神经样组织,以逐层沉积含有原代星形胶质细胞的明胶/ GelMA / 纤维蛋白原生物墨水。从小鼠幼崽的大脑皮层中提取和分离星形胶质细胞(图1),添加到生物材料组合物中,允许生物制造活的3D构建体。 计算机辅助设计(CAD)是使用G代码(补充文件)作为方形(0.6 x 0.6毫米)的互连框架开发的,孔?…

Discussion

3D生物打印技术已经成为一种生物制造替代方案,可以设计出在结构和生理上类似于天然组织22的精制结构,包括大脑23。神经样组织的生物制造允许在体外进行天然微环境建模,是了解与影响CNS11的许多疾病的发展和治疗相关的细胞和分子机制的重要工具。由于神经胶质细胞在神经功能中的重要作用,皮质星形胶质细胞已被用于许多研?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了圣保罗研究基金会(FAPESP)的支持,资助号为2018/23039-3和2018/12605-8;国家科学技术发展委员会(CNPq),批准号465656/2014-5和309679/2018-4;和高等教育人员改进协调(CAPES),财务代码001。

Materials

3D Bioprinter 3D Biotechnology Solutions Extrusion-based bioprinter
Blunt-tip forceps Integra Miltex 6–30 Forceps for brain dissection previously sterilized
Bovine serum albumin Sigma-Aldrich 9048-46-8 Protease free, fatty acid free, essentially globulin free
CaCl2 Sigma-Aldrich 10043-52-4
Cell culture flask Fisher Scientific 156340 Culture flask T25
Cell strainer Corning Incorporated 352340 Cell strainer 40 µm
Confocal microscope Leica Confocal TCS SP8 microscopy coupled with an Olympus FluoView 300 confocal system
Conical tubes Thermo Scientific 339651, 339652 Sterile tubes of 15 mL and 50 mL
DAPI Abcam ab224589 DAPI staining solution
DMEM/F12 Gibco; Life Technologies Corporation 12500062 DMEM/F-12 50/50, 1X (Dulbecco's Mod. Of Eagle's Medium/Ham's F12 50/50 Mix) with L-glutamine
Dyalisis tubing Sigma-Aldrich D9527 Molecular weight cut-off = 14 kDa
Ethanol Fisher Scientific 64-15-5 Reagent grade
Fetal Bovine Serum Gibco; Life Technologies Corporation 12657011 Research Grade
Fibrinogen Sigma-Aldrich 9001-32-5 Fibrinogen cristalline powder from bovine plasma
Gelatin Sigma-Aldrich 9000-70-8 Gelatin powder from porcine skin
Glycine Sigma-Aldrich 56-40-6 Glycine powder
Hanks Buffered Salt Solution (HBSS) Gibco; Life Technologies Corporation 14175095 No calcium, no magnesium, no phenol red
L-Glutamine Sigma-Aldrich 56-85-9 L-Glutamine crystalline powder
Laminin Sigma-Aldrich 114956-81-9 Laminin 1-2 mg/mL L in 50 mM Tris-HCl
Live dead kit cell imaging kit Thermo Scientific R37601 Green fluorescence in live cells (ex/em 488 nm/515 nm). Red fluorescence in dead cells (ex/em 570 nm/602 nm)
Methacrylic anhydride Sigma-Aldrich 760-93-0 For GelMA preparation
Microtubes Corning Incorporated MCT-150-C Microtubes of 1,5 mL
NaCl Sigma-Aldrich 7647-14-5
Needle 22G Fisher Scientific NC1362045 Sterile blunt needle
Operating scissor Integra Miltex 05–02 Sharp scissor for brain dissection previously sterilized
Paraformaldehyde Sigma-Aldrich 30525-89-4 Paraformaldehyde powder
Penicillin/Streptomycin Gibco; Life Technologies Corporation 15070063 Pen Strep (5,000 Units/ mL Penicillin; 5,000 ug/mL Streptomycin)
Petri dish Corning Incorporated 430591, 430588 Sterile petri dishes of 35 and 100 mm
Phalloidin Abcam ab176753 iFluor 488 reagent
Photoinitiator Sigma-Aldrich 106797-53-9 2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone
Phosphate buffer saline (PBS) Gibco; Life Technologies Corporation 10010023 PBS 1 x, culture grade, no calcium, no magnesium
Poly-L-lysine Sigma-Aldrich 25988-63-0 Poly-L-lysine hydrobromide mol wt 30,000-70,000
Primary antobody Abcam ab4674 Chicken polyclonal to GFAP
Secondary antibody Abcam ab150176 Alexa fluor 594 anti-chicken
Spatula Miltex V973-70 Number 24 cement spatula previously sterilized
Stereomicroscope Fisherbrand 3000038 Microscope for brain dissection
Syringe 5 mL BD 1222C84 Sterile syringe
Syringe filter 2 µm Fisher Scientific 09-740-105 Polypropylene filter for sterilization
Thrombin Sigma-Aldrich 9002–04-4 Thrombin cristalline powder from bovine plasma
Triton X-100 Sigma-Aldrich 9002-93-1 Laboratory grade
Trypsin-EDTA Gibco; Life Technologies Corporation 15400054 Trypsin no phenol red 1 x diluted in PBS
Versene solution Gibco; Life Technologies Corporation 15040066 Versene Solution (0.48 mM) formulated as 0.2 g EDTA(Na4) per liter of PBS
Well plate Thermo Scientific 144530 Sterile 24-well plate

References

  1. Di, L., Mannelli, C., Cuzzocrea, S. Astrocytes: Role and functions in brain pathologies. Frontiers in Pharmacology. 10, 1114 (2019).
  2. Kimelberg, H. K., Nedergaard, M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics. 7 (4), 338-353 (2010).
  3. Giovannoni, F., Quintana, F. J. The role of astrocytes in CNS inflammation. Trends in Immunology. 41 (9), 805-819 (2020).
  4. Escartin, C., et al. Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience. 24 (3), 312-325 (2021).
  5. Carson, M. J., Thrash, J. C., Walter, B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clinical Neuroscience Research. 6 (5), 237-245 (2006).
  6. Liddelow, S. A., Barres, B. A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity. 46 (6), 957-967 (2017).
  7. Clarke, L. E., et al. Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences of the Unied States of America. 115 (8), 1896-1905 (2018).
  8. Schildge, S., Bohrer, C., Beck, K., Schachtrup, C. Isolation and culture of mouse cortical astrocytes isolation and culture of mouse cortical astrocytes. Journal of Visualized Experiments: JoVE. (71), e50079 (2013).
  9. Duval, K., et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 32 (4), 266-277 (2017).
  10. Knight, E., Przyborski, S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. Journal of Anatomy. 227 (6), 746-756 (2015).
  11. Zhuang, P., Sun, A. X., An, J., Chua, C. K., Chew, S. Y. 3D neural tissue models: From spheroids to bioprinting. Biomaterials. 154, 113-133 (2018).
  12. Balasubramanian, S., Packard, J. A., Leach, J. B., Powell, E. M. Three-dimensional environment sustains morphological heterogeneity and promotes phenotypic progression. Tissue Engineering. Part A. 22 (11-12), 885-898 (2016).
  13. Watson, P. M. D., Kavanagh, E., Allenby, G., Vassey, M. Bioengineered 3D glial cell culture systems and applications for neurodegeneration and neuroinflammation. SLAS Discovery. 22 (5), 583-601 (2017).
  14. Li, Y. E., Jodat, Y. A., Samanipour, R., Zorzi, G., Zhu, K. Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication. , (2020).
  15. Zhou, X., et al. Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Applied Materials & Interfaces. 10 (10), 8993-9001 (2018).
  16. de la Vega, L., et al. 3D bioprinting human induced pluripotent stem cell-derived neural tissues using a novel lab-on-a-printer technology. Applied Sciences. 8 (12), 2414 (2018).
  17. Scheraga, H. A. The thrombin-fibrinogen interaction. Biophysical Chemistry. 112 (2-3), 117-130 (2004).
  18. Ariens, R. A. S., Lai, T., Weisel, J. W., Greenberg, C. S., Grant, P. J. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood. 100 (3), 743-754 (2002).
  19. Yue, K., et al. Synthesis, properties, and biomedical applications of Gelatin Methacryloyl (GelMA) hydrogels. Biomaterials. 73, 254-271 (2015).
  20. de Melo, B. A. G., et al. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomaterialia. 117, 60-76 (2020).
  21. Wang, X., et al. Gelatin-based hydrogels for organ 3D bioprinting. Polymers (Basel). 9 (9), 401 (2017).
  22. Murphy, S. V., Atala, A. 3D bioprinting of tissues and organs. Naure. Biotechnology. 32 (8), 773-785 (2014).
  23. de la Vega, L., Lee, C., Sharma, R., Amereh, M., Willerth, S. M. 3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Research Bulletin. 150, 240-249 (2019).
  24. Clavreul, S., et al. Cortical astrocytes develop in a plastic manner at both clonal and cellular levels. Nature Communications. 10 (1), 4884 (2019).
  25. Hanu, R., et al. Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. American Journal of Physiology. Cell Physiology. 278 (5), 921-930 (2000).
  26. Liu, R., Wang, Z. h., Gou, L., Xu, H. A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo. Molecular Medicine Reports. 12 (2), 2598-2606 (2015).
  27. Winter, C. C., Cullen, D. K., Donnell, J. C. O., Song, Y. J., Hernandez, N. S. Three-dimensional tissue engineered aligned astrocyte networks to recapitulate developmental mechanisms and facilitate nervous system regeneration. Journal of Visualized Experiments: JoVE. (131), e55848 (2018).
  28. East, E., Golding, J. P., Phillips, J. B. A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. Journal of Tissue Engineering and Regenerative Medicine. 3 (8), 634-646 (2009).
  29. Hawkinsn, B. T., Grego, S., Sellgren, K. L. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor B1. Brain Research. 1608, 167-176 (2015).
  30. Abelseth, E., et al. 3D printing of neural tissues derived from human induced pluripotent stem cells using a fibrin-based bioink. ACS Biomaterials Science and Engineering. 5 (1), 234-243 (2019).
  31. Filippo, T. R. M., et al. CXCL12 N-terminal end is sufficient to induce chemotaxis and proliferation of neural stem/progenitor cells. Stem Cell Research. 11 (2), 913-925 (2013).
  32. Galindo, L. T., et al. Chondroitin sulfate impairs neural stem cell migration through ROCK activation. Molecular Neurobiology. 55 (4), 3185-3195 (2018).
  33. Groll, J., et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 11 (1), 03001 (2018).
  34. Kyle, S., Jessop, Z. M., Al-sabah, A., Whitaker, I. S. Printability of candidate biomaterials for extrusion-based 3D printing: state-of-the-art. Advanced Healthcare Materials. 6 (16), (2017).
  35. Blaeser, A., et al. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Advanced Healthcare Materials. 5 (3), 326-333 (2016).
  36. Miyawaki, O., Omote, C., Matsuhira, K. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions. Biopolymers. 103 (12), 685-691 (2015).
  37. Shirahama, H., Lee, B. H., Tan, L. P., Cho, N. Precise tuning of facile one-pot Gelatin Methacryloyl (GelMA) synthesis. Science Reports. 6, 31036 (2016).
  38. Antonovaite, N., Beekmans, S. V., Hol, E. M., Wadman, W. J., Iannuzzi, D. Regional variations in stiffness in live mouse brain tissue determined by depth-controlled indentation mapping. Science Reports. 8 (1), 12517 (2018).
  39. Iwashita, M., et al. Comparative analysis of brain stiffness among amniotes using glyoxal fixation and atomic force microscopy. Frontiers in Cell and Developmental Biology. 8, 574619 (2020).
  40. Guimarães, C. F., Gasperini, L., Marques, A. P., Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nature Reviews. 5, 351-370 (2010).
  41. Ye, W., et al. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Materials and Design. 192, 108757 (2020).
  42. Wu, Y., et al. The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Bioscience Reports. 39 (1), 1-9 (2019).
  43. Edgar, J. M., Robinson, M., Willerth, S. M. Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells. Acta Biomaterialia. 51, 237-245 (2017).
  44. Arulmoli, J., et al. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomaterialia. 43, 122-138 (2016).
  45. Brenner, M. Role of GFAP in CNS Injuries. Neuroscience. Letters. 565, 7-13 (2014).
check_url/kr/62691?article_type=t

Play Video

Cite This Article
de Melo, B. A. G., Cruz, E. M., Ribeiro, T. N., Mundim, M. V., Porcionatto, M. A. 3D Bioprinting of Murine Cortical Astrocytes for Engineering Neural-Like Tissue. J. Vis. Exp. (173), e62691, doi:10.3791/62691 (2021).

View Video