Summary

用于线粒体疾病建模的人脑类器官的生成

Published: June 21, 2021
doi:

Summary

我们描述了产生人类诱导多能干细胞衍生脑类器官及其在线粒体疾病建模的详细方案。

Abstract

线粒体疾病是最大的一类先天性代谢缺陷,目前无法治愈。这些疾病导致神经发育缺陷,其潜在机制仍有待阐明。一个主要障碍是缺乏有效的模型来概括患者中早发性神经元损伤。诱导多能干细胞(iPSCs)技术的进步使三维(3D)脑类器官的产生成为可能,可用于研究疾病对神经系统发育和组织的影响。包括这些作者在内的研究人员最近引入了人脑类器官来模拟线粒体疾病。本文报告了人类iPSC衍生的脑类器官的强大生成及其在线粒体生物能量分析和成像分析中的应用的详细方案。这些实验将允许使用脑类器官来研究代谢和发育功能障碍,并可能为剖析线粒体疾病的神经元病理学提供关键信息。

Introduction

线粒体疾病是最大的一类先天性代谢缺陷1。它们是由破坏不同线粒体过程的基因突变引起的,包括氧化磷酸化(OXPHOS)2,呼吸链组装,线粒体动力学和线粒体DNA转录或复制3。有能量需求的组织尤其受线粒体功能障碍的影响4。因此,患有线粒体疾病的患者通常会出现早发性神经系统表现。

目前尚无针对线粒体疾病患儿的治疗方法5。线粒体疾病药物开发的一个主要障碍是缺乏概括人类疾病过程的有效模型6。目前研究的几种动物模型没有表现出患者中存在的神经缺陷7。因此,线粒体疾病神经元病理学的潜在机制仍未完全清楚。

最近的研究从受线粒体疾病影响的患者中产生了iPSCs,并使用这些细胞来获得患者特异性神经元细胞。例如,已发现与线粒体疾病Leigh综合征相关的遗传缺陷可导致细胞生物能量学89,蛋白质合成10和钙稳态911的畸变。这些报告为线粒体疾病中发生的神经元损伤提供了重要的机制线索,为这些不治之症的药物发现铺平了道路12

然而,二维(2D)文化无法调查3D器官的建筑复杂性和区域组织13。为此,使用源自患者特异性iPSCs14 的3D脑类器官可能使研究人员能够获得额外的重要信息,从而有助于剖析线粒体疾病如何影响神经系统的发育和功能15。使用iPSC衍生的脑类器官来研究线粒体疾病的研究开始揭示线粒体疾病的神经发育成分。

脊髓类器官携带与线粒体疾病、线粒体脑病、乳酸性酸中毒和卒中样发作综合征(MELAS)相关的突变,显示神经发生缺陷和运动神经元分化延迟16。来自线粒体疾病Leigh综合征患者的皮质类器官显示尺寸减小,神经上皮芽生成缺陷和皮质结构丧失17。来自Leigh综合征患者的脑类器官表明,疾病缺陷始于神经祖细胞的水平,其不能致力于线粒体代谢,导致异常神经元分支和形态发生18。因此,神经祖细胞可能代表线粒体疾病的细胞治疗靶点,促进其线粒体功能的策略可能支持神经系统的功能发育。

脑类器官的使用可能有助于揭示线粒体疾病的神经发育成分。线粒体疾病主要被认为是早发性神经变性5。然而,受线粒体疾病影响的患者也存在神经发育缺陷,包括发育迟缓和认知障碍19。患者特异性脑类器官可能有助于解决这些方面,并阐明线粒体疾病如何影响人脑发育。线粒体功能障碍也可能在其他更常见的神经系统疾病中起致病作用,例如阿尔茨海默病,帕金森病和亨廷顿病4。因此,使用脑类器官阐明线粒体缺陷对神经发育的影响也可能有助于研究这些疾病。本文描述了一种用于生成可重复脑类器官的详细方案,可用于进行线粒体疾病的疾病建模。

Protocol

注意:使用人类 iPSC 可能需要获得伦理批准。本研究中使用的iPSCs来自当地伦理批准后的健康对照个体(#2019-681)。所有细胞培养程序必须在无菌细胞培养罩下进行,在转移到罩下之前仔细消毒所有试剂和耗材。用于分化的人类iPSC的传代数应低于50,以避免在广泛培养时可能发生的潜在基因组畸变。细胞的多能状态应在类器官生成之前进行验证,例如,通过监测多能性相关标志物(如NANOG或OCT4)?…

Representative Results

这里描述的协议有助于圆类器官的稳健生成(图1A)。生成的类器官包含成熟的神经元,可以使用轴突(SMI312)和树突(微管相关蛋白2(MAP2))特异性的蛋白质标记物进行可视化(图1B) )。成熟的类器官不仅含有神经元细胞(MAP2阳性),还含有神经胶质细胞(例如,星形胶质细胞标志物S100钙结合蛋白B(S100ß)…

Discussion

本文描述了人类iPSC衍生的脑类器官的可重复生成及其在线粒体疾病建模中的应用。此处描述的协议是根据以前发表的 work20 进行修改的。本方案的一个主要优点是它不需要手动将每个类器官嵌入到支架基质中。实际上,基质溶液只是简单地溶解到细胞培养基中。此外,无需使用昂贵的生物反应器,因为类器官可以在标准组织培养物中培养6孔板,放置在培养箱内的轨道振荡器上。…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Miriam Bünning的技术支持。我们感谢德国联邦医疗协会(DFG)(PR1527/5-1至AP)、Spark和柏林卫生研究院(BIH)(BIH验证基金至AP)、联合线粒体疾病基金会(UMDF)(利综合征国际财团资助AP)、杜塞尔多夫大学医院(Forschungskommission UKD至AP)和德国联邦教育与研究部(BMBF)(e:生物年轻研究员向AP授予AZ 031L0211)。C.R.R.实验室的工作得到了DFG的支持(FOR 2795″压力下的突触”,Ro 2327/13-1)。

Materials

2-mercaptoethanol Gibco 31350-010
Affinity Designer Serif (Europe) Ltd Layout software; Vector graphics editor
Alexa Fluor 488 donkey anti-guinea pig Sigma Aldrich SAB4600033-250UL 1:300
Alexa Fluor 488 donkey anti-mouse Thermo Fisher Scientific A-31571 1:300
Antimycin A Sigma Aldrich 1397-94-0
Anti-β-Tubulin III (TUJ-1) Sigma Aldrich T8578 1:2000
Argon Laser Melles Griot Any other Laser, e.g., diode lasers emitting 488 is fine, too
Ascorbic acid Sigma A92902
B-27 with Vitamin A Gibco 17504044
Bacto Agar Becton Dickinson 3% in PBS, store solution at -20 °C
BDNF Miltenyi Biotec 130-093-0811
cAMP Sigma D0627
Cell Star cell culture 6 well plate Greiner-Bio-One 657160
Chemically Defined Lipid Concentrate Gibco 11905031
Confocal laser scanning microscope C1 Nikon Microscope Solutions Modular confocal microscope system
Corning Matrigel Growth Factor Reduced (GFR) Basement membrane matrix, Phenol Red-free, LDEV-free Corning 356231 Matrix component
CyQUANT Cell Proliferation Assay Kit Thermo Fisher C7026
DMEM/F12 ThermoFisher 31330038
DMSO Sigma D2660-100ML
Donkey anti-goat Cy3 Merck Millipore AP180C 1:300
Donkey anti-mouse Cy3 Merck Millipore AP192C 1:300
Donkey anti-rabbit Cy3 Merck Millipore AP182C 1:300
DPBS Gibco 14190250
DS-Q1Mc camera Nikon Microscope Solutions
Eclipse 90i upright widefield microscope Nikon Microscope Solutions
Eclipse E 600FN upright microscope Nikon Microscope Solutions
Eclipse Ts2 Inverted Microscope Nikon Microsope Solutions
EZ-C1 Silver Version 3.91 Nikon Microscope Solutions Imaging software for confocal microscope
FCCP Sigma Aldrich 370-86-5
Fetal Bovine Serum Gibco 10270-106
GDNF Miltenyi Biotec 130-096-291
Glasgow MEM Gibco 11710-035
Glass Pasteur pipette Brand 747715 Inverted
Glutamax Gibco 35050-061
Helium-Neon Laser Melles Griot Every other Laser, e.g., diode lasers emitting 594 is fine, too
Heparin Merck H3149-25KU
HERACell 240i CO2 Incubator Thermo Scientific 51026331
Hoechst 33342 Invitrogen H3570 1:2500
Image J 1.53c Wayne Rasband National Institute of Health Image processing Software
Injekt Solo 10 mL/ Luer Braun 4606108V
Knockout Serum Replacement Gibco 10828010
Laser (407 nm) Coherent Any other Laser, e.g., diode lasers emitting 407 is fine, too
Map2 Synaptic Systems No. 188004 1:1000
Maxisafe 2030i
MEM NEAA Gibco 11140-050
mTeSR Plus Stemcell Technology 85850 iPSC medium
Multifuge X3R Centrifuge Thermo Scientific 10325804
MycoAlert Mycoplasma Detection Kit Lonza # LT07-218
N2 Supplement Gibco 17502-048
Needle for single usage (23G x 1” TW) Neoject 10016
NIS-Elements Aadvanced Research 3.2 Nikon Imaging software
Oligomycin A Sigma Aldrich 75351
Orbital Shaker Heidolph Unimax 1010 Heidolph 543-12310-00
PAP Pen Sigma Z377821-1EA To draw hydrophobic barrier on slides.
Papain Dissociation System kit Worthington LK003150
Paraformaldehyde Merck 818715 4% in PBS, store solution at -20 °C
Pasteur pipette 7mL VWR 612-1681 Graduated up to 3 mL
Penicillin-Streptomycin Gibco 15140-122
Plan Apo VC 20x / 0.75 air DIC N2  ∞/0.17 WD 1.0 Nikon Microscope Solutions Dry Microscope Objective
Plan Apo VC 60x / 1.40 oil DIC N2 ∞/0.17 WD 0.13 Nikon Microscope Solutions Oil Immersion Microscope Objective
Polystyrene Petri dish (100 mm) Greiner Bio-One 664161
Polystyrene round-bottom tube with cell-strainer cap (5 mL) Falcon 352235
Potassium chloride Roth 6781.1
ProLong Glass Antifade Moutant Invitrogen P36980
Qualitative filter paper VWR 516-0813
Rock Inhibitior Merck SCM075
Rotenone Sigma 83-794
S100β Abcam Ab11178 1:600
SB-431542 Cayman Chemical Company 13031
Scalpel blades Heinz Herenz Hamburq 1110918
SMI312 Biolegend 837904 1:500
Sodium bicarbonate Merck/Sigma 31437-1kg-M
Sodium chloride Roth 3957
Sodium dihydrogen phosphate Applichem 131965
Sodium Pyruvate Gibco 11360070
SOX2 Santa Cruz Biotechnology Sc-17320 1:100
StemPro Accutase Cell Dissociation Reagent Gibco/StemPro A1110501 Reagent A
Super Glue Gel UHU 63261 adhesive gel
SuperFrost Plus VWR 631-0108
Syringe for single usage (1 mL) BD Plastipak 300015
TB2 Thermoblock Biometra
TC Plate 24 Well Sarstedt 83.3922
TC Plate 6 Well Sarstedt 83.392
TGFbeta3 Miltenyi Biotec 130-094-007
Tissue Culture Hood ThermoFisher 51032711
TOM20 Santa Cruz Biotechnology SC-11415 1:200
Triton-X Merck X100-5ML
UltraPure 0.5M EDTA Invitrogen 15575020
Vibratome Microm HM 650 V Thermo Scientific Production terminated, any other adjustable microtome is fine, too.
Vibratome Wilkinson Classic Razor Blade Wilkinson Sword 70517470
Whatman Benchkote Merck/Sigma 28418852
Wnt Antagonist I EMD Millipore Corp 3378738
XF 96 extracellular flux analyser Seahorse Bioscience 100737-101
XF Assay DMEM Medium Seahorse Bioscience 103680-100
XF Calibrant Solution Seahorse Bioscience 100840-000
XFe96 FluxPak (96-well microplate) Seahorse Bioscience 102416-100

References

  1. Koopman, W. J., Willems, P. H., Smeitink, J. A. Monogenic mitochondrial disorders. New England Journal of Medicine. 366 (12), 1132-1141 (2012).
  2. Gorman, G. S., et al. Mitochondrial diseases. Nature Review Disease Primers. 2, 16080 (2016).
  3. Vafai, S. B., Mootha, V. K. Mitochondrial disorders as windows into an ancient organelle. Nature. 491 (7424), 374-383 (2012).
  4. Carelli, V., Chan, D. C. Mitochondrial DNA: impacting central and peripheral nervous systems. Neuron. 84 (6), 1126-1142 (2014).
  5. Russell, O. M., Gorman, G. S., Lightowlers, R. N., Turnbull, D. M. Mitochondrial diseases: hope for the future. Cell. 181 (1), 168-188 (2020).
  6. Weissig, V. Drug development for the therapy of mitochondrial diseases. Trends in Molecular Medicine. 26 (1), 40-57 (2020).
  7. Tyynismaa, H., Suomalainen, A. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Reports. 10 (2), 137-143 (2009).
  8. Ma, H., et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature. 524 (7564), 234-238 (2015).
  9. Galera-Monge, T., et al. Mitochondrial dysfunction and calcium dysregulation in Leigh syndrome induced pluripotent stem cell derived neurons. International Journal of Molecular Science. 21 (9), 3191 (2020).
  10. Zheng, X., et al. Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. Elife. 5, 13378 (2016).
  11. Lorenz, C., et al. Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell. 20 (5), 659-674 (2017).
  12. Inak, G., et al. Concise review: induced pluripotent stem cell-based drug discovery for mitochondrial disease. Stem Cells. 35 (7), 1655-1662 (2017).
  13. Chiaradia, I., Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nature Neuroscience. 23 (12), 1496-1508 (2020).
  14. Lancaster, M. A., Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocol. 9 (10), 2329-2340 (2014).
  15. Liput, M., et al. Tools and approaches for analyzing the role of mitochondria in health, development and disease using human cerebral organoids. Developmental Neurobiology. , (2021).
  16. Winanto, K. Z. J., Soh, B. S., Fan, Y., Ng, S. Y. Organoid cultures of MELAS neural cells reveal hyperactive Notch signaling that impacts neurodevelopment. Cell Death and Disease. 11 (3), 182 (2020).
  17. Romero-Morales, A. I., et al. Human iPSC-derived cerebral organoids model features of Leigh Syndrome and reveal abnormal corticogenesis. bioRxiv. , (2020).
  18. Inak, G., et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nature Communications. 12 (1), 1929 (2021).
  19. Falk, M. J. Neurodevelopmental manifestations of mitochondrial disease. Journal of Developmental & Behavioral Pediatrics. 31 (7), 610-621 (2010).
  20. Velasco, S., et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 570 (7762), 523-527 (2019).
  21. Pfiffer, V., Prigione, A. Assessing the bioenergetic profile of human pluripotent stem cells. Methods in Molecular Biology. 1264, 279-288 (2015).
  22. Ludikhuize, M. C., Meerlo, M., Burgering, B. M. T., Colman, R. M. J. Protocol to profile the bioenergetics of organoids using Seahorse. STAR Protocols. 2 (1), 100386 (2021).
  23. Menacho, C., Prigione, A. Tackling mitochondrial diversity in brain function: from animal models to human brain organoids. International Journal of Biochemestry & Cell Biology. 123, 105760 (2020).
  24. Del Dosso, A., Urenda, J. P., Nguyen, T., Quadrato, G. Upgrading the physiological relevance of human brain organoids. Neuron. 107 (6), 1014-1028 (2020).
check_url/kr/62756?article_type=t

Play Video

Cite This Article
Le, S., Petersilie, L., Inak, G., Menacho-Pando, C., Kafitz, K. W., Rybak-Wolf, A., Rajewsky, N., Rose, C. R., Prigione, A. Generation of Human Brain Organoids for Mitochondrial Disease Modeling. J. Vis. Exp. (172), e62756, doi:10.3791/62756 (2021).

View Video