Summary

海洋蛀木甲壳类动物对木材生物降解性能的快速测试

Published: January 29, 2022
doi:

Summary

该协议提出了一种通过测量粪便颗粒产生来评估蛀木甲壳类动物 Limnoria的进食速率的方法。该方法设计用于非专业实验室,并有可能纳入标准测试协议,以评估海洋条件下增强的木材耐久性。

Abstract

蛀木无脊椎动物迅速破坏海洋木材和沿海木制基础设施,每年在全球范围内造成数十亿美元的损失。由于使用广谱杀菌剂处理木材,如杂酚油和铬化砷酸铜(CCA),现在受到立法限制用于海洋用途,因此需要天然耐用的木材种类和新颖的木材保存方法。这些方法经过测试,以满足监管标准,例如针对海洋蛀虫测试木材防腐剂的欧洲标准EN 275。通过实验室测试可以快速、廉价地对耐用木材物种或木材防腐剂处理进行初步研究,这比通常成本高昂的长期海洋野外试验具有许多优势。许多种类的 Limnoria (gribble)是海洋蛀木甲壳类动物。 Limnoria 非常适合用于海洋蛀木者对木材生物降解的实验室测试,因为将它们饲养在水族箱中的实用性以及易于测量它们在木材上的进食率。在这里,我们概述了一种可标准化的实验室测试,用于使用gribble评估木材的生物降解。

Introduction

蛀木虫可对海洋木结构造成广泛损害,如海防、码头和水产养殖结构;更换或修复,全世界每年花费数十亿美元123。为了保护这些结构,木材通常经过处理以减少生物降解。然而,由于澳大利亚、欧盟、英国和美国在海洋环境中限制使用广谱杀菌剂,因此人们追捧对蛀虫具有天然耐久性的新型改性技术和木材种类4567。在海洋环境中保存木材的新技术需要彻底的测试,以满足监管标准并限制任何化学防腐剂浸出等危害对环境的影响。例如,欧洲标准EN 275是1992年的现行欧洲标准,用于评估木材防腐处理对海洋蛀木器的损害89。该标准与其他禁止使用杀生物化合物的立法(如CCA4567 和杂酚油10)一起,需要可持续的,无毒的木材保护方法,并使用天然耐用的木材物种来取代杀菌处理1112.海洋试验,例如EN 275中规定的试验,需要较长的暴露期,因此成本高昂且缓慢,无法产生有意义的结果。然而,实验室测试为保护木材产品免受海洋蛀木虫攻击的测试方法提供了一种更快的替代方案,可以快速评估对处理时间表的调整13。这种快速实验室实验的结果旨在为木材的新型改性过程提供信息,并确定具有天然耐久性的木材物种,以应对蛀虫的损害。低进料速率和活力可能表明潜在产品的抗性增加,然后可以将此信息反馈给行业合作伙伴,以使他们能够改进设计。我们的方法允许灵活和快速的响应,这在工业中是可取的,一旦确定了有前途的产品,就可以用海洋试验的结果来补充。

Gribbles(Limnoria)是Limnoriidae家族中的等足甲壳类动物属。全世界有超过60种Limnoria131415,在英国发现了三种常见物种,Limnoria lignorum,Limnoria tripunctataLimnoria quadripunctata16。他们在淹没在海水中的木材表面开挖隧道,经常造成经济上的重大损害。Gribbles在英国沿海水域非常丰富,并且在实验室条件下易于维护,使其成为研究海洋蛀木无脊椎动物木材生物降解的理想生物。评估不同木材种类和木材保存方法上的进料速率和活力可以确定其抗生物降解的功效。以下协议列出了一种测量磨料速率的标准方法,该方法由Borges及其同事1217开发而成,此外还简化了图像分析的引入,使该过程可以在非专业实验室中操作。图像分析还用于减少手动计数大量样品的实际限制。根据英国标准EN350-1:1994,长期海洋测试的耐久性根据樟子松边材18进行分级。在这里介绍的短期实验室测试中,我们使用苏格兰松(Pinus sylvestris L)边材作为测试ekki(Lophira alata Banks ex C.F Gaertn),山毛榉(Fagus sylvatica L),甜栗(Castanea sativa Mill)和松节油(Syncarpia glomulifera(Sm.)Nied)的心材的对照。使用每种木材品种八次重复的平均粪便颗粒产量和活力作为耐久性的指标。我们提供从典型评估中收集的说明性数据,使用格里布物种Limnoria quadripunctata和一系列天然耐用的木材物种。由Menzies(1951)提供的钥匙确定的Limnoria quadripunctata被选为生物降解试验的最佳物种,因为它是该家族中研究最充分的成员,并且被公认为用于生物降解试验的模型物种。该协议也适用于测试不同处理的木材,尽管使用的对照应该是未经处理的同一物种的复制。

Protocol

1. 准备测试棒 完成任何处理过程后,将干燥的木材切割成尺寸为2 mm x 4 mm x 20 mm的测试棒(图1)。在实验室条件下,风干粘在恒定的重量上。使用至少5个被测试木材的复制品。 图1:用于短期实验室测试的测试棒…

Representative Results

L.2020年11月,使用五种不同的木材类型(苏格兰松(Pinus sylvestris L)边材和山毛榉(Fagus sylvatica L),ekki(Lophira alata Banks ex C. F Gaertn),甜栗子(Castanea sativa Mil)和松节油(Syncarpia glomulifera (Sm.) Neid))的心材(见材料表)进行了为期20天的四分鼎目。每个木种使用八根复制棒,每根木棍喂养一个四尖瓣木的标本。所有鲷鱼都?…

Discussion

在选择用于喂养实验的试样之前,应对个体进行筛选以评估其适用性。由于体型的差异,个体之间的进食速率可能存在一些差异,因此应仅选择完全生长的成年标本。Borges等人在1.5毫米和3毫米长之间的个体的进食速率之间没有显着差异,200917。雌性 Limnoria 孵化卵,在此期间喂养率降低。因此,在选择标本时,应检查并丢弃任何育雏雌性。同样,蜕皮个体的进食率也会降?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

感谢挪威研究委员会(奥斯陆区域基金,Alcofur rffofjor 269707)和朴茨茅斯大学(理学院博士研究助学金)为露西·马丁的研究提供资金。此外,Gervais S. Sawyer提供了用于产生代表性结果的木材。松节油由不列颠哥伦比亚大学的Philip Evans教授提供。

Materials

12-well cell culture plates ThermoFisher Scientific 150200
50ml Falcon tubes Fisher Scientific 14-432-22
Adjustable volume pipette Fisher Scientific FBE10000 1-10 ml
Beech G. Sawyer (consultant in timber technology) Fagus sylvatica Taxonomic authority: L
Ekki G. Sawyer (consultant in timber technology) Lophira alata Taxonomic authority: Banks ex C. F. Gaertn.
Forceps Fisher Scientific 10098140
Incubator LMS LTD INC5009
Microporous specimen capsules Electron Microscopy Sciences 70187-20
Petri dish Fisher Scientific FB0875713
Scots Pine G. Sawyer (consultant in timber technology) Pinus sylvestris Taxonomic authority: L.
Size 00000 paintbrush Hobby Craft 5674331001 Size 000 or 0000 also acceptable
Sweet Chestnut G. Sawyer (consultant in timber technology) Castanea sativa Taxonomic authority: Mill
Turpentine P. Evans (Professor, Dept. Wood Science, University of British Columbia) Syncarpia glomulifera Taxonomic authority: (Sm.) Nied.
Vacuum desiccator Fisher Scientific 15544635

References

  1. Morrell, J. J., Kutz, M. Protection of wood-based materials. Handbook of environmental degradation of materials, 3rd ed. , 343-368 (2018).
  2. Distel, D. L., Goodell, B., Nicholas, D., Schultz, T. The biology of marine wood boring bivalves and their bacterial endosymbionts. Wood deterioration and preservation. , 253-271 (2003).
  3. Buslov, V., Scola, P. Inspection and structural evaluation of timber pier: case study. Journal of Structural Engineering. 117 (9), 2725-2741 (1991).
  4. Registration Eligibility Decision for Chromated Arsenicals. List A, Case No. 0132. US EPA – Office of prevention, pesticides and toxic substances Available from: https://swap.stanford.edu/20110202084/http://www.epa.gov/oppsrrd1/reregistration/REDs/cca_red.pdf (2008)
  5. Arsenic timber treatments (CCA and arsenic trioxide) review scope document, Review series 03.1. ISSN number 1443. Australian pesticides and veterinary medicines authority Available from: https://apvma.gov.au/sites/default/files/publication/14296-arsenic-timber-review-scope.pdf (2003)
  6. Commission directive 2003/2/EC of 6 January 2003 relating to restrictions on the marketing and use of arsenic (tenth adaptation to technical progress to Council Deretive 76/769/EEC). Official Journal of the European Communities Available from: https://www.legislation.gov.uk/eudr/2003/2/adopted (2003)
  7. The Hazardous Waste (England and Wales) Regulations 2005 No.894. Environmental Protection England and Wales Available from: https://www.legislation.gov.uk/uksi/2005/894/contents/made (2005)
  8. Palanti, S., Cragg, S. M., Plarre, R. Resistance against marine borers: About the revision of EN 275 and the attempt for a new laboratory standard for Limnoria. International Research Group on Wood Preservation, Document No. IRG/WP 20-20669. , (2020).
  9. The European Commission for Standardization. EN 275:1992. Wood preservatives- Determination of the protective effectiveness against marine wood borers. The European Commission for Standardization (CEN). , (1992).
  10. European Commission. Directive 98/8/EC concerning the placing of biocidal products on the market. Communication and Information Resource Centre for Administrations, Businesses and Citizens. , (2010).
  11. Mantanis, G. I. Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources. 12 (2), 4478-4489 (2017).
  12. Borges, L. M. S., Cragg, S. M., Bergot, J., Williams, J. R., Shayler, B., Sawyer, G. S. Laboratory screening of tropical hardwoods for natural resistance to the marine borer Limnoria quadripunctata: The role of leachable and non-leachable factors. Holzforschung. 62 (1), 99-111 (2008).
  13. Cragg, S. M., Pitman, A., Henderson, S. Developments in the understanding of the biology of marine wood boring crustaceans and in methods of controlling them. International Biodeterioration & Biodegradation. 43 (4), 197-205 (1999).
  14. Cookson, L. J., Vic, M. D. C. Additions to the taxonomy of the Limnoriidae. Memoirs of the Museum of Victoria. 56 (1), 129-143 (1997).
  15. Cookson, L. Australasian species of Limnoriidae (Crustacea: Isopoda). Memoirs of the Museum of Victoria. 52 (2), 137 (1991).
  16. Jones, L. T. The geographical and vertical distribution of British Limnoria [Crustacea: Isopoda]. Journal of the Marine Biological Association of the United Kingdom. 43 (3), 589-603 (1963).
  17. Borges, L. M. S., Cragg, S. M., Busch, S. A laboratory assay for measuring feeding and mortality of the marine wood borer Limnoria under forced feeding conditions: A basis for a standard test method. International Biodeterioration & Biodegradation. 63 (3), 289-296 (2009).
  18. BSI Standards Publication. BS EN 350:2016. Durability of wood and wood-based products – Testing and classification of the durability to biological agents of wood and wood-based materials. BSI Standards Publication. , (2016).
  19. Menzies, R. . The phylogeny, systematics, distribution, and natural history of limnoria. , 196-208 (1951).
  20. Palanti, S., Feci, E., Anichini, M. Comparison between four tropical wood species for their resistance to marine borers (Teredo spp and Limnoria spp) in the Strait of Messina. International Biodeterioration & Biodegradation. 104, 472-476 (2015).
  21. Delgery, C. C., Cragg, S. M., Busch, S., Morgan, E. Effects of the epibiotic heterotrich ciliate Mirofolliculina limnoriae and moulting on the faecal pellet production by the wood-boring isopods Limnoria tripunctata and Limnoria quadripunctata. Journal of Experimental Marine Biology and Ecology. 334 (2), 165-173 (2006).
  22. Morrell, J. J., Helsing, G. G., Graham, R. D. Marine wood maintenance manual: a guide for proper use of Douglas-fir in marine exposures. Forest Research Laboratory. , (1984).
  23. Slevin, C. R., Westin, M., Lande, S., Cragg, S. Laboratory and marine trials of resistance of furfurylated wood to marine borers. Eighth European Conference on Wood Modification. , 464-471 (2015).
  24. Westin, M., et al. Marine borer resistance of acetylated and furfurylated wood – results from up to 16 years of field exposure. International Research Group on Wood Preservation. , (2016).
  25. Westin, M., Rapp, A., Field Nilsson, T. Field test of resistance of modified wood to marine borers. Wood Material Science and Engineering. 1 (1), 34-38 (2006).
  26. Borges, L. M. S. Biodegradation of wood exposed in the marine environment: Evaluation of the hazard posed by marine wood-borers in fifteen European sites. International Biodeterioration & Biodegradation. 96 (1), 97-104 (2014).
  27. Treu, A., et al. Durability and protection of timber structures in marine environments in Europe: An overview. BioResources. 14 (4), 10161-10184 (2019).
  28. Williams, J. R., Sawyer, G. S., Cragg, S. M., Simm, J. A questionnaire survey to establish the perceptions of UK specifiers concerning the key material attributes of timber for use in marine and freshwater engineering. Journal of the Institute of Wood Science. 17 (1), 41-50 (2005).
  29. Purnell, P. The carbon footprint of reinforced concrete. Advances in Cement Research. 25 (6), 362-368 (2013).
  30. Hill, C. A. S. The environmental consequences concerning the use of timber in the built environment. Frontiers in Built Environment. 5, 129 (2019).
  31. Mercer, T. G., Frostick, L. E. Leaching characteristics of CCA-treated wood waste: a UK study. Science of the Total Environment. 427, 165-174 (2012).
  32. Brown, C. J., Eaton, R. A., Thorp, C. H. Effects of chromated copper arsenate (CCA) wood preservative on early fouling community formation. Marine Pollution Bulletin. 42 (11), 1103-1113 (2001).
  33. Brown, C. J., Eaton, R. A. Toxicity of chromated copper arsenate (CCA)-treated wood to non-target marine fouling communities in Langstone Harbour, Portsmouth, UK. Marine Pollution Bulletin. 42 (4), 310-318 (2001).
  34. Brown, C. J., Albuquerque, R. M., Cragg, S. M., Eaton, R. A. Effects of CCA (copper-chrome-arsenic) preservative treatment of wood on the settlement and recruitment of wood of barnacles and tube building polychaete worms. Biofouling. 15 (1-3), 151-164 (2000).
  35. Lebow, S. T., Foster, D. O., Lebow, P. K. Release of copper, chromium and arsenic from treated southern pine exposed in seawater and freshwater. Forest Products Journal. 49 (7), 80-89 (1999).
  36. Smith, P. T. Risk to human health and estuarine posed by pulling out creosote-treated timber on oyster farms. Aquatic Toxicology. 86 (2), 287-298 (2008).
  37. Brown, C. J., et al. Assessment of Effects of Chromated Copper Arsenate (CCA)-Treated Timber on Nontarget Epibiota by Investigation of Fouling Community Development at Seven European Sites. Archives of Environmental Contamination and Toxicology. 45 (1), 0037-0047 (2003).
check_url/kr/62776?article_type=t

Play Video

Cite This Article
Martin, L. S., Shipway, J. R., Martin, M. A., Malyon, G. P., Akter, M., Cragg, S. M. Rapid Testing of Resistance of Timber to Biodegradation by Marine Wood-Boring Crustaceans. J. Vis. Exp. (179), e62776, doi:10.3791/62776 (2022).

View Video