Summary

ओपन एंडेड सहयोगी लर्निंग में इंटर-ब्रेन सिंक्रोनी: एक fNIRS-हाइपरस्कैनिंग अध्ययन

Published: July 21, 2021
doi:

Summary

एक प्रकृतिवादी सीखने के माहौल में सहयोगी सीखने dyads पर fNIRS हाइपरस्कैनिंग प्रयोगों के संचालन के लिए प्रोटोकॉल रेखांकित किया गया है। इसके अलावा, ऑक्सीजनयुक्त हीमोग्लोबिन (ऑक्सी-एचबी) संकेतों के इंटर-ब्रेन सिंक्रोनी (आईबीएस) का विश्लेषण करने के लिए एक पाइपलाइन प्रस्तुत की गई है।

Abstract

FNIRS हाइपरस्कैनिंग का व्यापक रूप से सामाजिक संपर्क के न्यूरोबायोलॉजिकल अंडरपिनिंग का पता लगाने के लिए उपयोग किया जाता है। इस तकनीक के साथ, शोधकर्ताओं ने इंटर-ब्रेन सिंक्रोनी (आईबीएस) (यानी, चरण और/या समय भर में हीमोडायनामिक संकेतों के आयाम संरेखण) नामक एक उपन्यास सूचकांक के साथ दो या अधिक इंटरैक्टिव व्यक्तियों की समवर्ती मस्तिष्क गतिविधि को अर्हता प्राप्त की । एक प्रकृतिवादी सीखने के माहौल में सहयोगी सीखने dyads पर fNIRS हाइपरस्कैनिंग प्रयोगों के संचालन के लिए एक प्रोटोकॉल यहां प्रस्तुत किया जाता है । इसके अलावा ऑक्सीजनयुक्त हीमोग्लोबिन (ऑक्सी-एचबी) सिग्नल के आईबीएस का विश्लेषण करने की पाइपलाइन के बारे में बताया गया है। विशेष रूप से, प्रयोगात्मक डिजाइन, एनआईआरएस डेटा रिकॉर्डिंग की प्रक्रिया, डेटा विश्लेषण विधियों और भविष्य के निर्देशों पर सभी चर्चा कर रहे हैं। कुल मिलाकर, एक मानकीकृत fNIRS हाइपरस्कैनिंग पाइपलाइन को लागू करना दूसरे व्यक्ति के तंत्रिका विज्ञान का एक मौलिक हिस्सा है। इसके अलावा, यह अनुसंधान की प्रजनन क्षमता में सहायता करने के लिए ओपन-साइंस के आह्वान के अनुरूप है।

Introduction

हाल ही में, इंटरैक्टिव डायड या किसी समूह के सदस्यों में समवर्ती मस्तिष्क गतिविधि को प्रकट करने के लिए, शोधकर्ता हाइपरस्कैनिंग दृष्टिकोण1,2को नियोजित करते हैं। विशेष रूप से, इलेक्ट्रोएंसेफेलोग्राम (ईईजी), कार्यात्मक चुंबकीय अनुनाद इमेजिंग (एफएमआरआई), और कार्यात्मक निकट-अवरक्त स्पेक्ट्रोस्कोपी (एफएनआईआरएस) का उपयोग दो या अधिक विषयों से तंत्रिका और मस्तिष्क गतिविधियों कोएक साथ3,4, 5से रिकॉर्ड करने के लिए कियाजाताहै। शोधकर्ता इस तकनीक के आधार पर समवर्ती मस्तिष्क युग्मन को आकर्षित करने वाले एक तंत्रिका सूचकांक निकालते हैं, जो इंटर-ब्रेन सिंक्रोनी (आईबीएस) (यानी, चरण और/या समय भर में न्यूरोनल या हीमोडायनामिक संकेतों के आयाम संरेखण को संदर्भित करता है)। कई व्यक्तियों (जैसे, खिलाड़ी-दर्शक, प्रशिक्षक-शिक्षार्थी और नेता-अनुयायी)6,7,8 के बीच सामाजिक संपर्क के दौरान विभिन्न प्रकार के हाइपरस्कैनिंग शोध में आईबीएस पायागया। इसके अलावा , आईबीएस प्रभावी शिक्षा और अनुदेश 9 ,10 ,11,12,13,14केविशिष्ट निहितार्थरखताहै । प्राकृतिक शिक्षण परिदृश्यों में हाइपरस्कैनिंग अनुसंधान की बढ़ती के साथ, हाइपरस्कैनिंग प्रयोगों का एक मानक प्रोटोकॉल स्थापित करना और इस क्षेत्र में डेटा विश्लेषण की पाइपलाइन आवश्यक है।

इस प्रकार, यह पेपर सहयोगी लर्निंग डायड के एफएनआईआरएस-आधारित हाइपरस्कैनिंग और आईबीएस का विश्लेषण करने के लिए एक पाइपलाइन आयोजित करने के लिए एक प्रोटोकॉल प्रदान करता है। फनीआरएस एक ऑप्टिकल इमेजिंग टूल है, जो अप्रत्यक्ष रूप से हीमोग्लोबिन के स्पेक्ट्रल अवशोषण का आकलन करने के लिए निकट-अवरक्त प्रकाश को विकीर्ण करता है, और फिर हेमोडायनामिक/ऑक्सीजन गतिविधिको 15,16,17मापा जाता है। एफएमआरआई की तुलना में, एफएनआईआरएस गति कलाकृतियों से कम प्रवण है, जो वास्तविक जीवन प्रयोग कर रहे हैं (जैसे, नकल, बात कर रहे हैं, और गैर-मौखिक संचार)18,7,19से माप की अनुमति देता है। ईईजी की तुलना में, एफएनआईआरएस उच्च स्थानिक संकल्प रखता है, जिससे शोधकर्ताओं को मस्तिष्क गतिविधि20के स्थान का पता लगाने की अनुमति देता है। इस प्रकार, स्थानिक संकल्प, रसद और व्यवहार्यता में ये फायदे हाइपरस्कैनिंग माप1का संचालन करने के लिए fNIRS को योग्य बनाते हैं। इस तकनीक का उपयोग करके, एक उभरता हुआ अनुसंधान निकाय आईबीएस के रूप में एक सूचकांक शब्द का पता लगाता है – दो (या अधिक) लोगों के मस्तिष्क गतिविधि का तंत्रिका संरेखण – प्राकृतिक सामाजिक सेटिंग्स9,10, 11,12,13, 14के विभिन्न रूपों में। उन अध्ययनों में, इस सूचकांक की गणना करने के लिए विभिन्न तरीकों (यानी, सहसंबंध विश्लेषण और वेवलेट ट्रांसफॉर्म जुटना (डब्ल्यूटीसी) विश्लेषण लागू किए जाते हैं; इस बीच, इस तरह के विश्लेषण पर एक मानक पाइपलाइन आवश्यक है, लेकिन कमी है । नतीजतन, आईबीएस की पहचान करने के लिए डब्ल्यूटीसी विश्लेषण का उपयोग करके fNIRS-आधारित हाइपरस्कैनिंग और एक पाइपलाइन के संचालन के लिए एक प्रोटोकॉल इस काम में प्रस्तुत किया जाता है

इस अध्ययन का उद्देश्य एफएनआईआरएस हाइपरस्कैनिंग तकनीक का उपयोग करके सहयोगी सीखने वाले डायड्स में आईबीएस का मूल्यांकन करना है। सबसे पहले, एक सहयोगी सीखने के कार्य के दौरान प्रत्येक डायड के प्रीफ्रंटल और बाएं अस्थायी क्षेत्रों में एक साथ एक हीमोडायनामिक प्रतिक्रिया दर्ज की जाती है। इन क्षेत्रों की पहचान इंटरैक्टिव शिक्षण और अधिगम 9 ,10 ,11,12,13,14से जुड़ेकेरूप में की गई है । दूसरा, IBS प्रत्येक संबंधित चैनल पर गणना की है । एफएनआईआरएस डेटा रिकॉर्डिंग प्रक्रिया में दो भाग होते हैं: आराम-राज्य सत्र और सहयोगी सत्र। आराम-राज्य सत्र 5 मिनट तक रहता है, जिसके दौरान दोनों प्रतिभागियों (आमने-सामने बैठे, एक मेज (0.8 मीटर) द्वारा एक-दूसरे के अलावा) अभी भी बने रहने और आराम करने की आवश्यकता होती है। इस विश्राम-राज्य सत्र को बेसलाइन के रूप में परोसा जाता है । फिर, सहयोगी सत्र में, प्रतिभागियों को एक साथ पूरी सीखने की सामग्री का अध्ययन करने, समझ प्राप्त करने, नियमों का सारांश, और सुनिश्चित करें कि सभी सीखने की सामग्री में महारत हासिल कर रहे है कहा जाता है । यहां, प्रयोग और fNIRS डेटा विश्लेषण आयोजित करने के विशिष्ट चरण प्रस्तुत किए जाते हैं।

Protocol

सभी भर्ती प्रतिभागी (४० डायड, मतलब आयु २२.१ ± १.२ वर्ष; १००% दाएं हाथ; सामान्य या सही-से-सामान्य दृष्टि) स्वस्थ थे । प्रयोग से पहले प्रतिभागियों ने सूचित सहमति दी । प्रतिभागियों को उनकी भागीदारी के लिए आर्थ…

Representative Results

चित्रा 1 प्रायोगिक प्रोटोकॉल और जांच स्थान दिखाता है। FNIRS डेटा रिकॉर्डिंग प्रक्रिया में दो भाग होते हैं: आराम-राज्य सत्र (5 मिनट) और सहयोगी सत्र (15-20 मिनट)। सहयोगी सीखने dyads आराम करने के लिए और आराम…

Discussion

सबसे पहले, वर्तमान प्रोटोकॉल में, सहयोगी सीखने के परिदृश्य में FNIRS हाइपरस्कैनिंग प्रयोगों के संचालन के विशिष्ट चरणों को बताया गया है। दूसरा, सहयोगी लर्निंग डायड्स में हीमोडायनामिक संकेतों के आईबीएस क?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

यह काम उत्कृष्ट डॉक्टरेट छात्रों (YBNLTS2019-025) और नेशनल नेचुरल साइंस फाउंडेशन ऑफ चाइना (31872783 और 71942001) के लिए ECNU अकादमिक नवाचार संवर्धन कार्यक्रम द्वारा समर्थित है।

Materials

EEG caps Compumedics Neuroscan,Charlotte,USA 64-channel Quik-Cap We choose two sizes of cap(i.e.medium and large).
NIRS measurement system with probe sets and probe holder grids Hitachi Medical Corporation, Tokyo, Japan ETG-7100 Optical Topography System The current study protocol requires an optional second adult probe set for 92 channels of measurement in total.
Numeric computing platform The MathWorks, Inc., Natick, MA MATLAB R2020a Serves as base for Psychophysics Toolbox extensions (stimulus presentation), Homer2  (fNIRS preprocess analysis), and "wtc" function(WTC computation).
Psychology software psychology software tools,Sharpsburg, PA,USA E-prime 2.0 we apply E-prime to start the fNIRS measurement system and send triggers which marking the rest phase and collaborative learning phase for fNIRS recording data
Swimming caps Zoke corporation,Shanghai,China 611503314 We first placed the standard 10-20 EEG cap on the head mold, and placed the swimming cap on the EEG cap. Second, we marked (inion, Cz, T3, T4, PFC and P5) with chalk.
Three-dimensional (3-D) digitizer Polhemus, Colchester, VT, USA; Three-dimensional (3-D) digitizer Anatomical locations of optodes in relation to standard head landmarks were determined for each participant using a Patriot 3D Digitizer

References

  1. Babiloni, F., Astolfi, L. Social neuroscience and hyperscanning techniques: past, present and future. Neuroscience & Biobehavioral Reviews. 44, 76-93 (2014).
  2. Schilbach, L., et al. Toward a second-person neuroscience. Behavior Brain Science. 36, 393-414 (2013).
  3. Montague, P. Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage. 16, 1159-1164 (2002).
  4. Cui, X., Bryant, D. M., Reiss, A. L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage. 59 (3), 2430-2437 (2012).
  5. Dikker, S., et al. Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology. 27 (9), 1375-1380 (2017).
  6. Abrams, D. A., et al. Inter-subject synchronization of brain responses during natural music listening. European Journal of Neuroscience. 37 (9), 1458-1469 (2013).
  7. Pan, Y., et al. Instructor-learner brain coupling discriminates between instructional approaches and predicts learning. NeuroImage. 211, 116657 (2020).
  8. Jiang, J., et al. Leader emergence through interpersonal neural synchronization. Proceedings of the National Academy of Sciences of the United States of America. 112 (14), 4274-4279 (2015).
  9. Bevilacqua, D., et al. Brain-to-brain synchrony and learning outcomes vary by student-teacher dynamics: Evidence from a real-world classroom electroencephalography study. Journal of Cognitive Neuroscience. 31 (3), 401-411 (2019).
  10. Dikker, S., et al. Morning brain: real-world neural evidence that high school class times matter. Social Cognitive and Affective Neuroscience. 15 (11), 1193-1202 (2020).
  11. Pan, Y., Guyon, C., Borragán, G., Hu, Y., Peigneux, P. Interpersonal brain synchronization with instructor compensates for learner’s sleep deprivation in interactive learning. Biochemical Pharmacology. , 114111 (2020).
  12. Pan, Y., Novembre, G., Song, B., Li, X., Hu, Y. Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song. NeuroImage. 183, 280-290 (2018).
  13. Zheng, L., et al. Enhancement of teaching outcome through neural prediction of the students’ knowledge state. Human Brain Mapping. 39 (7), 3046-3057 (2018).
  14. Zheng, L., et al. Affiliative bonding between teachers and students through interpersonal synchronisation in brain activity. Social Cognitive and Affective Neuroscience. 15 (1), 97-109 (2020).
  15. Kleinschmidt, A., et al. Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. Journal of Cerebral Blood Flow & Metabolism. 16 (5), 817-826 (1996).
  16. Strangman, G., Culver, J. P., Thompson, J. H., Boas, D. A. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. NeuroImage. 17 (2), 719-731 (2002).
  17. Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., Boas, D. A. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage. 29 (2), 368-382 (2006).
  18. Holper, L., Scholkmann, F., Wolf, M. Between-brain connectivity during imitation measured by fNIRS. NeuroImage. 63, 212-222 (2012).
  19. Hirsch, J., Zhang, X., Noah, J. A., Ono, Y. Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. NeuroImage. 157, 314-330 (2017).
  20. Wilcox, T., Biondi, M. fNIRS in the developmental sciences. Wiley Interdisciplinary Reviews: Cognitive Science. 6 (3), 263-283 (2015).
  21. Ye, J. C., Tak, S., Jang, K. E., Jung, J., Jang, J. NIRS-SPM: statistical parametric mapping for nearinfrared spectroscopy. NeuroImage. 44 (2), 428-447 (2009).
  22. Huppert, T. J., Diamond, S. G., Franceschini, M. A., Boas, D. A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics. 48 (10), 280-298 (2009).
  23. Santosa, H., Zhai, X., Fishburn, F., Huppert, T. The NIRS Brain AnalyzIR toolbox. Algorithms. 11 (5), 73 (2018).
  24. Xu, Y., Graber, H. L., Barbour, R. L. nirsLAB: a computing environment for fNIRS neuroimaging data analysis. Biomedical Optics. , (2014).
  25. Cope, M., Delpy, D. T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Medical and Biological Engineering and Computing. 26 (3), 289-294 (1988).
  26. Hoshi, Y. Functional near-infrared spectroscopy: current status and future prospects. Journal of Biomedical Optics. 12 (6), 062106 (2007).
  27. Molavi, B., Dumont, G. A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement. 33 (2), 259 (2012).
  28. Cooper, R., et al. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Frontiers in Neuroscience. 6, 147 (2012).
  29. Zhang, X., Noah, J. A., Hirsch, J. Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics. 3 (1), 015004 (2016).
  30. Grinsted, A., Moore, J. C., Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics. 11, 561-566 (2004).
  31. Maris, E., Oostenveld, R. Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods. 164 (1), 177-190 (2007).
  32. Nozawa, T., Sasaki, Y., Sakaki, K., Yokoyama, R., Kawashima, R. Interpersonal frontopolar neural synchronization in group communication: an exploration toward fNIRS hyperscanning of natural interactions. NeuroImage. 133, 484-497 (2016).
  33. Reindl, V., Gerloff, C., Scharke, W., Konrad, K. Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage. 178, 493-502 (2018).
  34. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J. D. Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena. 58 (1-4), 77-94 (1992).
  35. Genovese, C. R., Lazar, N. A., Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage. 15 (4), 870-878 (2002).
  36. Nichols, T., Hayasaka, S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research. 12 (5), 419-446 (2003).
  37. Tsuzuki, D., et al. Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage. 34 (4), 1506-1518 (2007).
  38. Singh, A. K., Okamoto, M., Dan, H., Jurcak, V., Dan, I. Spatial registration of multi-channel multi-subject fNIRS data to MNI space without MRI. NeuroImage. 27 (4), 842-851 (2005).
  39. Noah, J. A., et al. Comparison of short-channel separation and spatial domain filtering for removal of non-neural components in functional near-infrared spectroscopy signals. Neurophotonics. 8 (1), 015004 (2021).
  40. Noah, J. A., et al. Real-time eye-to-eye contact is associated with cross-brain neural coupling in angular gyrus. Frontiers in Human Neuroscience. 14 (19), (2020).
  41. Torrence, C., Compo, G. P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society. 79 (1), 61-78 (1998).
  42. Osaka, N., Minamoto, T., Yaoi, K., Azuma, M., Osaka, M. Neural synchronization during cooperated humming: a hyperscanning study using fNIRS. Procedia-Social and Behavioral Sciences. 126, 241-243 (2014).
  43. Dommer, L., Jäger, N., Scholkmann, F., Wolf, M., Holper, L. Between-brain coherence during joint n-back task performance: a two-person functional near-infrared spectroscopy study. Behavioural Brain Research. 234 (2), 212-222 (2012).
  44. Holper, L., Scholkmann, F., Wolf, M. Between-brain connectivity during imitation measured by fNIRS. Neuroimage. 63, 212-222 (2012).
  45. Nguyen, T., et al. The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex. 124, 235-249 (2020).
  46. Seth, A. K., Barrett, A. B., Barnett, L. Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience. 35 (8), 3293-3297 (2015).
  47. Funane, T., et al. Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy. Journal of Biomedical Optics. 16 (7), 077011 (2011).
  48. Liu, T., Saito, H., Oi, M. Role of the right inferior frontal gyrus in turn-based cooperation and competition: a near-infrared spectroscopy study. Brain and Cognition. 99, 17-23 (2015).
  49. Lachaux, J. P., Rodriguez, E., Martinerie, J., Varela, F. J. Measuring phase synchrony in brain signals. Human Brain Mapping. 8 (4), 194-208 (1999).
  50. Burgess, A. P. On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Frontiers in Human Neuroscience. 7, 881 (2013).
  51. Burgos-Robles, A., et al. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nature Neuroscience. 20 (6), 824-835 (2017).
  52. Mende, S., Proske, A., Narciss, S. Individual preparation for collaborative learning: Systematic review and synthesis. Educational Psychologist. , 1-25 (2020).
  53. Hamilton, A. F. D. C. Hyperscanning: Beyond the hype. Neuron. 109 (3), 404-407 (2021).
  54. Novembre, G., Iannetti, G. D. Hyperscanning alone cannot prove causality. Multibrain stimulation can. Trends in Cognitive Sciences. 25 (2), 96-99 (2021).
check_url/kr/62777?article_type=t

Play Video

Cite This Article
Zhao, N., Zhu, Y., Hu, Y. Inter-Brain Synchrony in Open-Ended Collaborative Learning: An fNIRS-Hyperscanning Study. J. Vis. Exp. (173), e62777, doi:10.3791/62777 (2021).

View Video