Summary

构建一种无线内窥镜植入式传感器,用于使用基于零偏置肖特基二极管的接收器进行pH监测

Published: August 27, 2021
doi:

Summary

该手稿介绍了一种微型植入式pH传感器,具有ASK调制无线输出以及基于零偏置肖特基二极管的完全无源接收器电路。该解决方案可用作开发 体内 校准电刺激治疗设备和动态pH监测的基础。

Abstract

病理性反流的动态 pH 值监测是观察症状与食道暴露于酸性或非酸性反流物之间关系的机会。本文介绍了一种开发、制造和植入微型无线pH传感器的方法。该传感器设计为使用单个止血夹在内窥镜下植入。此外,还构建并测试了基于零偏置肖特基二极管的完全无源基于整流罩的接收器。为了构建该器件,使用了两层印刷电路板和现成的组件。带有集成模拟外设的微型微控制器用作离子敏感场效应晶体管(ISFET)传感器的模拟前端,并生成数字信号,该信号通过幅度移位键控发射器芯片传输。该设备由两个原碱性电池供电。植入式装置的总体积为0.6 cm3 ,重量为1.2克,其性能在 离体 模型(猪食道和胃)中得到验证。接下来,构建了一种基于小尺寸的无源矫直仪接收器,该接收器可以轻松集成到外部接收器或植入式神经刺激器中,并证明可以在靠近植入物(20厘米)时接收来自植入物的RF信号。传感器体积小,可提供连续的pH监测,同时将食道阻塞降至最低。该传感器可用于常规临床实践,用于24/96小时食管pH监测,而无需插入鼻导管。接收器的”零功率”特性还允许使用传感器对微型食管下括约肌神经刺激装置进行自动 体内 校准。基于传感器的主动控制支持开发高级算法,以最大限度地减少使用的能量,从而实现理想的临床结果。这种算法的一个例子是用于胃食管反流病(GERD)按需神经刺激治疗的闭环系统。

Introduction

蒙特利尔共识将胃食管反流病(GERD)定义为”当胃内容物反流引起不愉快的症状和/或并发症时发展的病症”。它可能与其他特定并发症相关,例如食管狭窄、Barrett 食管或食管腺癌。胃食管反流病影响约20%的成年人口,主要发生在经济地位高的国家1

病理性反流的动态pH值监测(酸暴露时间超过6%)使我们能够区分症状与酸性或非酸性胃食管反流之间的关系23。对于对 PPI(质子泵抑制剂)治疗无反应的患者,pH 监测可以回答是否为病理性胃食管反流,以及为什么患者对标准 PPI 治疗无反应。目前提供各种pH和阻抗监测选项。其中一种较新的可能性是使用植入式设备进行无线监控45

胃食管反流病与食管下括约肌 (LES) 疾病相关,食管压测量期间显示的收缩不是病理性的,但在长期胃食管反流病中振幅减小。LES由平滑肌组成,由于肌源性和神经源性因素而维持强直收缩。由于迷走神经介导的抑制作用,一氧化氮作为神经递质6,它会松弛下来。

在犬回流模型中,用两对电极进行电刺激可以增加LES的收缩时间7。LES的松弛(包括吞咽期间的残余压力)不受低频和高频刺激的影响。高频刺激是显而易见的选择,因为它需要更少的功率并延长电池寿命。

虽然食管下括约肌的电刺激治疗(ET)在GERD患者的治疗中是一个相对较新的概念,但这种疗法被证明是安全有效的。这种形式的治疗已被证明可以显着和持久地缓解GERD的症状,同时消除PPI治疗的需要并减少食管酸暴露8910

目前用于诊断胃食管反流病的最先进的pH传感器是Bravo设备1112。在估计体积为1.7 cm3时,它可以直接植入食道,有或没有视觉内窥镜反馈,并提供食道pH值的24小时以上监测。

考虑到电刺激疗法是治疗对标准疗法无反应的胃食管反流病的最有希望的替代方案之一813,因此将pH传感器的数据提供给神经刺激器是有意义的。最近的研究显示了该领域未来发展的明确道路,这将导致刚性一体化植入式装置,该装置将驻留在神经刺激部位1415。为此,ISFET(离子敏感场效应晶体管)是最好的传感器类型之一,因为它具有微型性质,可以在片上集成参考电极(在这种情况下是金),并且灵敏度足够高。在硅上,ISFET类似于标准MOSFET(金属氧化物半导体场效应晶体管)的结构。然而,通常连接到电气端子的栅极被与周围环境直接接触的一层活性物质所取代。对于pH敏感的ISFET,该层由氮化硅(Si3N416形成。

内窥镜植入式设备的主要缺点是电池尺寸的固有限制,这可能导致这些设备的使用寿命缩短,或促使制造商开发先进的算法,以更低的能源成本提供所需的效果。这种算法的一个例子是用于GERD按需神经刺激治疗的闭环系统。与连续血糖仪(CGM)+胰岛素泵系统17类似,这样的系统将采用食管pH传感器或其他传感器来检测食管下括约肌的当前压力以及神经刺激装置。

对神经刺激治疗的反应和对神经刺激模式的要求可以是个体的13。因此,重要的是要开发独立的传感器,这些传感器可用于功能障碍的诊断和表征,或根据患者的个体要求积极参与校准神经刺激系统18。这些传感器应尽可能小,以免影响器官的正常功能。

本手稿介绍了一种设计和制造基于 ISFET 的 pH 传感器的方法,该传感器具有幅度偏移键控 (ASK) 发射器和基于小尺寸无源直馏器的接收器。基于该解决方案的简单架构,pH数据可以通过外部接收器甚至可植入式神经刺激器接收,而不会产生任何显着的体积或功率损失。选择ASK调制是因为无源接收器的性质,它只能检测接收的RF信号功率(通常称为”接收信号强度”)。作为补充材料嵌入的原理图显示了设备的结构。它直接由两节AG1碱性电池供电,这两节电池提供2.0-3.0 V之间的电压(基于充电状态)。电池为内部微控制器供电,该微控制器利用其ADC(模数转换器)、DAC(数模转换器)、内部运算放大器和FVR(固定电压基准)外设来偏置ISFET pH传感器。由此产生的”栅极”电压(金参比电极)与周围环境的pH值成正比。稳定的IDS 电流由低端R2检测电阻提供。ISFET传感器的电源连接到运算放大器的同相输入,而反相输入连接到DAC模块设置为960 mV的输出电压。运算放大器的输出连接到ISFET的漏极引脚。该运算放大器调节漏极电压,使R2电阻上的电压差始终为960 mV。因此,29 μA的恒定偏置电流流过ISFET(正常工作时)。然后用ADC测量栅极电压。然后,微控制器通过其中一个GPIO(通用输入/输出)引脚为RF发射器供电并传输序列。RF发射器电路涉及晶体和匹配网络,该网络将输出匹配到50 Ω阻抗。

对于这里演示的实验,我们使用猪胃,其中一长段食道安装在标准化的塑料模型中。这是练习内窥镜技术的常用模型,例如ESD(内窥镜粘膜下剥离),POEM(口腔内窥镜肌切开术),内窥镜粘膜切除术(EMR),止血等。关于最接近人体器官的解剖参数,我们使用体重40-50公斤的猪的胃和食道。

Protocol

本研究没有涉及任何活体动物。该实验是在由猪食道和胃组成的 离体 模型上进行的。胃和食道是从当地屠宰场购买的,作为他们的标准产品。此程序符合捷克法律,由于”3R”原则(替换,减少和改进),我们更喜欢它。 1. pH电极组件的制造 注:在 pH 传感器组件的整个制造过程中,请遵守处理静电放电 (ESD) 敏感组件的注意事项。使用烙铁时要小心…

Representative Results

成功构建了一个能够自主pH传感和无线传输pH值的设备,如图8所示。构造的设备是一个微型模型;它重1.2克,体积为0.6厘米3。近似尺寸为 18 毫米 x 8.5 毫米 x 4.5 毫米。如图15、图16和图17所示,可以用单个止血夹将食管下括约肌植入附近;无需特殊配件。植入传感器的解剖食道的详细视图如?…

Discussion

这种方法适用于致力于开发新型有源可植入医疗器械的研究人员。它需要熟练程度地制造带有表面贴装元件的电子原型。该协议中的关键步骤与电子产品的制造有关,特别是填充PCB,这很容易导致操作员在放置和焊接小组件时出错。然后,正确的封装对于延长暴露在潮湿和液体中的设备的使用寿命至关重要。植入方法的设计考虑了简单性。植入过程中食道穿孔或其他不良事件的风险很小。止血夹?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感激地感谢查理大学(项目GA UK No 176119)支持这项研究。这项工作得到了查理大学研究项目PROGRES Q 28(肿瘤学)的支持。

Materials

AG1 battery Panasonic SR621SW Two batteries per one implant
Battery holder MYOUNG MY-521-01
Copper enamel wire for the antenna pro-POWER QSE Wire – 0.15 mm diameter, 38 SWG
Epoxy for encapsulation Loctite EA M-31 CL Two-part medical-grade ISO10993 compliant epoxy
FEP cable for pH sensor Molex / Temp-Flex 100057-0273
Flux cleaner Shesto UTFLLU05 Prepare 5% solution in deionized water for cleaning by sonication
Hemostatic clip Boston Scientific Resolution
Hot air gun + soldering iron W.E.P. Model 706 Any soldering iron capable of soldering with tin and hot-air gun capable of maintaining 260 °C can be used
Impedance matching software Iowa Hills Software Smith Chart Can be downloaded from http://www.iowahills.com/9SmithChartPage.html – alternatively, any RF design software supports calculation of impedance matching components
ISFET pH sensor on a PCB WinSense WIPS Order a model pre-mounted on a PCB with on-chip gold reference electrode
Laboratory pH meter Hanna Instruments HI2210-02 Used with HI1131B glass probe
Microcontorller programmer Microchip PICkit 3 Other PIC16 compatible programmers can be also used
Pig stomach with esophagus Local pig farm Obtained from approx. 40–50 kg pig It is important that the stomach includes a full length of the esophagus.
Printed circuit board – receiver Choose preferred PCB supplier According to pcb2.zip data One layer, 0.8 mm thickness, FR4, no mask
Printed circuit board – sensor Choose preferred PCB supplier According to pcb1.zip data Two-layer with PTH, 0.6 mm thickness, FR4, 2x mask
Receiver – 0R Vishay CRCW04020000Z0EDC See Figure 12 and Figure 13 for placement
Receiver – 1.5 pF Murata GRM0225C1C1R5CA03L See Figure 12 and Figure 13 for placement
Receiver – 100 pF Murata GRM0225C1E101JA02L See Figure 12 and Figure 13 for placement
Receiver – 33 nH Pulse Electronics PE-0402CL330JTT See Figure 12 and Figure13 for placement
Receiver – RF schottky diodes MACOM MA4E2200B1-287T See Figure 12 and Figure 13 for placement
Receiver – SMA antenna LPRS ANT-433MS
Receiver – SMA connector Linx Technologies CONSMA001 See Figure 12 and Figure 13 for placement
Sensor – C1 Murata GRM0225C1H8R0DA03L 8 pF 0402 capacitor
Sensor – C2 Murata GRM0225C1H8R0DA03L 8 pF 0402 capacitor
Sensor – C3 Murata GCM155R71H102KA37D 1 nF 0402 capacitor
Sensor – C4 Murata GRM0225C1H1R8BA03L 1.8 pF
Sensor – C5 Vishay CRCW04020000Z0EDC Place 0R 0402 resistor or use to match the antenna
Sensor – C6 Murata GRM155C81C105KE11J 1 uF 0402 capacitor
Sensor – C7 Murata GRM155C81C105KE11J 1 uF 0402 capacitor
Sensor – C8 Murata GRM022R61A104ME01L 100 nF 0402 capacitor
Sensor – IC1 Microchip MICRF113YM6-TR MICRF113 RF transmitter
Sensor – IC2 Microchip PIC16LF1704-I/ML PIC16LF1704 low-power microcontroller
Sensor – R1 Vishay CRCW040210K0FKEDC 10 kOhm 0402 resistor
Sensor – R2 Vishay CRCW040233K0FKEDC 33 kOhm 0402 resistor
Sensor – R3 Vishay CRCW04021K00FKEDC 1 kOhm 0402 resistor
Sensor – R5 Vishay CRCW040210K0FKEDC 10 kOhm 0402 resistor
Sensor – X1 ABRACON ABM8W-13.4916MHZ-8-J2Z-T3 3.2 x 2.5 mm 13.4916 MHz 8 pF crystal
Titanium wire Sigma-Aldrich GF36846434 0.125 mm titanium wire
Vector network analyzer mini RADIO SOLUTIONS miniVNA Tiny Other vector network analyzers can be used – the required operation frequency is 300–500 MHz, resolution bandwidth equal or lower than 1 MHz, output power of no more than 0 dBm and dynamic range preferably better than 60 dB for the receiving front-end

References

  1. El-Serag, H. B., Sweet, S., Winchester, C. C., Dent, J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut. 63 (6), 871-880 (2014).
  2. Gyawali, C. P., et al. Modern diagnosis of GERD: the Lyon Consensus. Gut. 67 (7), 1351-1362 (2018).
  3. Cesario, S., et al. Diagnosis of GERD in typical and atypical manifestations. Acta Biomedica. 89 (5), 33-39 (2018).
  4. Sifrim, D., Gyawali, C. P. Prolonged wireless pH monitoring or 24-hour catheter-based pH impedance monitoring: Who, When, and Why. American Journal of Gastroenterology. 115 (8), 1150-1152 (2020).
  5. Chae, S., Richter, J. E. Wireless 24, 48, and 96 Hour or impedance or oropharyngeal prolonged pH monitoring: Which test, when, and why for GERD. Current Gastroenterology Reports. 20 (11), 52 (2018).
  6. Furness, J. B., Callaghan, B. P., Rivera, L. R., Cho, H. -. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 817, 39-71 (2014).
  7. Sanmiguel, C. P., et al. Effect of electrical stimulation of the LES on LES pressure in a canine model. American Journal of Physiology-Gastrointestinal and Liver Physiology. 295 (2), 389-394 (2008).
  8. Rodríguez, L., et al. Electrical stimulation therapy of the lower esophageal sphincter is successful in treating GERD: final results of open-label prospective trial. Surgical Endoscopy. 27 (4), 1083-1092 (2013).
  9. Rinsma, N. F., Bouvy, N. D., Masclee, A. A. M., Conchillo, J. M. Electrical stimulation therapy for gastroesophageal reflux disease. Journal of Neurogastroenterology and Motility. 20 (3), 287-293 (2014).
  10. Rodríguez, L., et al. Two-year results of intermittent electrical stimulation of the lower esophageal sphincter treatment of gastroesophageal reflux disease. Surgery. 157 (3), 556-567 (2015).
  11. Kwiatek, M. A., Pandolfino, J. E. The BravoTM pH capsule system. Digestive and Liver Disease. 40 (3), 156-160 (2008).
  12. Karamanolis, G., et al. Bravo 48-hour wireless pH monitoring in patients with non-cardiac chest pain. objective gastroesophageal reflux disease parameters predict the responses to proton pump inhibitors. Journal of Neurogastroenterology and Motility. 18 (2), 169-173 (2012).
  13. Rodríguez, L., et al. Two-year results of intermittent electrical stimulation of the lower esophageal sphincter treatment of gastroesophageal reflux disease. Surgery (United States). 157 (3), 556-567 (2015).
  14. Hajer, J., Novák, M., Rosina, J. Wirelessly powered endoscopically implantable devices into the submucosa as the possible treatment of gastroesophageal reflux disease. Gastroenterology Research and Practice. 2019, 1-7 (2019).
  15. Deb, S., et al. Development of innovative techniques for the endoscopic implantation and securing of a novel, wireless, miniature gastrostimulator (with videos). Gastrointestinal Endoscopy. 76 (1), 179-184 (2012).
  16. Shin, P., Mikolajick, T., Ryssel, H. pH Sensing Properties of ISFETs with LPCVD Silicon Nitride Sensitive-Gate. The Journal of Electrical Engineering and Information Science. 2, 82-87 (1997).
  17. Benhamou, P. -. Y., et al. Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. The Lancet Digital Health. 1 (1), 17-25 (2019).
  18. Nikolic, M., et al. Tailored modern GERD therapy – steps towards the development of an aid to guide personalized anti-reflux surgery. Scientific Reports. 9 (1), 19174 (2019).
  19. Hajer, J., Novák, M. Autonomous and rechargeable microneurostimulator endoscopically implantable into the submucosa. Journal of Visualized Experiments: JoVE. (139), e57268 (2018).
  20. Pavelka, M., Roth, J. Parietal Cells Of Stomach: Secretion Of Acid. Functional Ultrastructure. , 202-203 (2010).
  21. Jones, R. D., Neuman, M. R., Sanders, G., Cross, F. S. Miniature antimony pH electrodes for measuring gastroesophageal reflux. The Annals of Thoracic Surgery. 33 (5), 491-495 (1982).
  22. Waugh, R. W., Buted, R. R. The zero bias schottky diode detector at temperature extremes-problems and solutions. Proceedings of the WIRELESS Symposium. , 175-183 (1996).
  23. Soffer, E. Effect of electrical stimulation of the lower esophageal sphincter in gastroesophageal reflux disease patients refractory to proton pump inhibitors. World Journal of Gastrointestinal Pharmacology and Therapeutics. 7 (1), 145 (2016).
  24. . Microsemi ZL70323 MICS-band RF miniaturized standard implant module (MiniSIM) Available from: https://www.microsemi.com/document-portal/doc_download/135307-zl70323-datasheet (2015)
check_url/kr/62864?article_type=t

Play Video

Cite This Article
Novák, M., Rosina, J., Gürlich, R., Cibulková, I., Hajer, J. Construction of a Wireless-Enabled Endoscopically Implantable Sensor for pH Monitoring with Zero-Bias Schottky Diode-based Receiver. J. Vis. Exp. (174), e62864, doi:10.3791/62864 (2021).

View Video