Summary

开发一种细胞共培养模型以模拟心脏缺血/体外再灌注

Published: October 13, 2021
doi:

Summary

空间距离是评估分离内皮和心肌细胞层共培养模型中缺氧/再氧合损伤的关键参数,首次表明优化共培养空间环境对于为测试内皮细胞在心肌细胞保护中的作用提供有利的 体外 模型是必要的。

Abstract

缺血性心脏病是全世界死亡和残疾的主要原因。再灌注可导致缺血以外的其他损伤。内皮细胞(EC)可以通过细胞间相互作用保护心肌细胞(CM)免受再灌注损伤。共培养可以帮助研究细胞 – 细胞相互作用的作用。混合共培养是最简单的方法,但由于分离处理和单细胞类型的下游分析不可行,因此受到限制。为了研究ECs是否可以以剂量依赖性方式衰减CM细胞损伤,以及是否可以通过改变两个细胞系之间的接触距离来进一步优化这种保护,我们使用小鼠原发冠状动脉内皮细胞和成年小鼠心肌细胞来测试三种类型的细胞培养插入物,其细胞间层距离在0.5, 分别为 1.0 毫米和 2.0 毫米。在仅CM中,通过乳酸脱氢酶(LDH)释放评估的细胞损伤在缺氧期间和再氧合后显着增加,当距离为2.0 mm时,与0.5和1.0 mm相比。当EC和CM几乎直接接触(0.5 mm)时,缺氧后CM的再氧合损伤只有轻度衰减。当空间距离为1.0 mm时,这种衰减显着增加,当距离为2.0 mm时,EC在缺氧和缺氧/再氧合期间都减轻了CM损伤,表明ECs需要足够的培养距离才能与CM串扰,以便分泌的信号分子可以循环并充分刺激保护途径。我们的研究结果首次表明,优化EC/CM共培养空间环境对于测试EC在模拟缺血/再灌注损伤CM保护中的作用提供了有利的 体外 模型。本报告的目标是为调查人员提供一种循序渐进的方法,以利用这一重要模型来发挥自己的优势。

Introduction

缺血性心脏病是全世界死亡和残疾的主要原因12。然而,再灌注的治疗过程本身可引起心肌细胞死亡,称为心肌缺血/再灌注(IR)损伤,对此仍然没有有效的补救措施3。内皮细胞(EC)已被建议通过分泌旁分泌以及细胞间相互作用来保护心肌细胞(CMs) 4

细胞共培养模型已被广泛用于研究自分泌和/或旁分泌细胞 – 细胞相互作用对细胞功能和分化的作用。在共培养模型中,混合共培养是最简单的,其中两种不同类型的细胞以所需的细胞比5在单个培养室内直接接触。然而,鉴于混合群体,细胞类型之间的单独处理和单细胞类型的下游分析并不容易实现。

先前的研究表明,缺氧和缺血性损伤对细胞膜的完整性造成显着损害,通过乳酸脱氢酶(LDH)的释放来测量。这种损伤在复氧时加重,类似于再灌注损伤678。当前方案的目标是测试假设,即EC的存在可以剂量依赖性地衰减由缺氧和再氧合(HR)引起的CM的细胞膜泄漏,并且可以通过改变两个细胞系之间的接触距离来优化EC的保护作用。因此,我们采用了三种类型的细胞培养插入物和小鼠原发性冠状动脉内皮细胞和成年小鼠心肌细胞。这些由康宁、默克密理博和格瑞纳Bio-One品牌设计的插入物使我们能够创建三种不同的细胞培养串扰条件,细胞间距离分别为0.5、1.0和2.0 mm。在每种情况下,每个刀片镀100,000个EC。

此外,为了确定共培养中ECs的密度是否有助于该模型中的HR损伤衰减,我们研究了EC浓度与CM释放LDH之间的剂量 – 反应关系。

本报告为调查人员提供了一种循序渐进的方法,使他们能够利用这一重要模型。

Protocol

1. 实验准备/电镀 根据制造商的说明维护CM和EC。 当两个细胞系从供应商处到达时,解冻它们。用新鲜培养基洗涤后,将板放入T25烧瓶中。建议从购买细胞的同一供应商处购买每种细胞培养基。第二天,用培养基刷新细胞,并在汇合时使用。 将细胞培养箱保持在37°C,21%O2,5%CO2,74%N2 并保持加湿。注意:从C57BL / 6小鼠的冠状动脉中分离…

Representative Results

本实验中使用的所有三种类型的插入物(A,B,C)具有相同的0.4μm孔径。它们之间的唯一区别是插入物到碱基的高度,这使得两个共培养的细胞层之间的距离分别为0.5,1.0和2.0 mm(图3),并且它们来自不同的供应商(有关详细信息,请参阅 材料表)。 为了建立一种 体外 共培养模型,其中两个细胞系的单独层经历HR以模拟IR损伤,我?…

Discussion

协议中的关键步骤
细胞共培养模型已被用于研究心脏保护的细胞机制。因此,如何创建两个独立的层,它们之间有有意义的距离,对于开发合适的共培养模型至关重要。研究模拟IR(即HR损伤)的一个挑战是,不仅缺血(缺氧)本身,而且再灌注(再氧合)也会加重细胞功能障碍。因此,一个现实的模型需要反映这些特征,例如,证明缺氧后再氧合的损伤充分增加,而不是单独缺氧…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到了美国退伍军人事务部生物医学实验室研发服务(I01 BX003482)和M.L.R.机构资金的支持。

Materials

Adult Mouse Cardiomyocytes (CMs) Celprogen Inc 11041-14 Isolated from adult C57BL/6J mouse cardiac tissue
Automated Cell Counter Countess II Invitrogen A27977 Cell counting for calculating cell numbers
Bio-Safety Cabinet Nuaire NU425400 Cell culture sterile hood
Cell Culture Freezing Medium Cell Biologics Inc 6916 Used for cell freezing for long term cell line storage
Cell Culture Incubator Nuaire Nu-5500 To provide normal cell living condition (21%O2, 5%CO2, 74%N2, 37°C, humidified)
Cell Culture Incubator Gas Tank A-L Compressed Gases UN1013 Gas needed for cell culture incubator 
Cell Culture Inserts A (0.5 mm) Corning Inc 353095 Used for EC-CM co-culture
Cell Culture Inserts B (1.0 mm) Millicell Millipore PIHP01250 Used for EC-CM co-culture
Cell Culture Inserts C (2.0 mm) Greiner Bio-One 662640 Used for EC-CM co-culture
Centrifuge Anstel Enterprises Inc 4235 For cell culture plating and passaging
CMs Cell Culture Flasks T25 Celprogen Inc E11041-14 Used for CMs regular culture, coated by manufacturer
CMs Cell Culture Medium Complete Celprogen Inc M11041-14S CMs culture complete medium
CMs Cell Culture Medium Complete Phenol free Celprogen Inc M11041-14PN CMs culture medium without phenol red used during LDH measurement
CMs Cell Culture Plates 96 well Celprogen Inc E11041-14-96well Used for experiments of LDH measurement, coated by manufacturer
CMs Hypoxia Cell Culture Medium Celprogen Inc M11041-14GFPN CMs cell culture under hypoxic condition (glucose- and serum-free)
Countess cell counting chamber slides Invitrogen C10283 Counting slides used for cell counter
Cyquant LDH Cytotoxicity Kit Thermo Scientific  C20301 LDH measurement kit
ECs Cell Culture Flasks T25 Fisher Scientific  FB012935 Used for ECs regular culture
ECs Cell Culture Medium Complete Cell Biologics Inc M1168 ECs culture complete medium
ECs Cell Culture Medium Complete Phenol free Cell Biologics Inc M1168PF ECs culture medium without phenol red used during LDH measurement
ECs Cell Culture Plates 96 well Fisher Scientific (Costar) 3370 Used for experiments of LDH measurement
ECs Culture Gelatin-Based Coating Solution Cell Biologics Inc 6950 Used for coating flasks and plates for ECs
ECs Hypoxia Cell Culture Medium Cell Biologics Inc GPF1168 ECs cell culture under hypoxic condition (glucose- and serum-free)
Fetal Bovine Serum (FBS) Fisher Scientific MT35011CV FBS-HI USDA-approved for cell culture and maintenance
Hypoxia Chamber StemCell Technologies 27310 To create a hypoxic condition with 0.01%O2 environment
Hypoxia Chamber Flow Meter StemCell Technologies 27311 To connect with hypoxic gas tank for a consistent gas flow speed
Hypoxic Gas Tank (0.01%O2 Cylinder) A-L Compressed Gases UN1956 Used to flush hypoxic medium and chamber (0.01%O2/5%CO2/94.99N2)
Microscope  Nikon TMS To observe cell condition
Mouse Primary Coronary Artery Endothelial Cells (ECs) Cell Biologics Inc C57-6093 Isolated from coronary artery of C57BL/6 mice
NUNC 15ML CONICL Tubes Fisher Scientific 12565269 For cell culture process, experiments, solution preparation etc.
NUNC 50ML CONICL Tubes Fisher Scientific 12565271 For cell culture process, experiments, solution preparation etc.
Phosphate Buffered Saline (PBS) Sigma-Aldrich D8662 Used for cell washing during culture or experiments
Plate Reader BioTek Instrument 11120533 Colorimetric or fluorometric plate reading
Reaction 96 Well Palte (clear no lid) Fisher Scientific 12565226 Used for LDH measurement plate reading
Trypsin/EDTA for CMs Celprogen Inc T1509-014 1 x sterile filtered and tissue culture tested
Trypsin/EDTA for ECs Cell Biologics Inc 6914/0619 0.25%, cell cuture-tested

References

  1. Hausenloy, D. J., et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Research in Cardiology. 111 (6), 70 (2016).
  2. Hausenloy, D. J., Yellon, D. M. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. The Journal of Clinical Investigation. 123 (1), 92-100 (2013).
  3. Gottlieb, R. A. Cell death pathways in acute ischemia/reperfusion injury. Journal of Cardiovascular Pharmacology and Therapeutics. 16 (3-4), 233-238 (2011).
  4. Colliva, A., Braga, L., Giacca, M., Zacchigna, S. Endothelial cell-cardiomyocyte crosstalk in heart development and disease. The Journal of Physiology. 598 (14), 2923-2939 (2020).
  5. Bogdanowicz, D. R., Lu, H. H. Studying cell-cell communication in co-culture. Biotechnology Journal. 8 (4), 395-396 (2013).
  6. Salzman, M. M., Bartos, J. A., Yannopoulos, D., Riess, M. L. Poloxamer 188 protects isolated adult mouse cardiomyocytes from reoxygenation injury. Pharmacology Research & Perspectives. 8 (6), 00639 (2020).
  7. Kalogeris, T., Baines, C. P., Krenz, M., Korthuis, R. J. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology. 298, 229-317 (2012).
  8. Martindale, J. J., Metzger, J. M. Uncoupling of increased cellular oxidative stress and myocardial ischemia reperfusion injury by directed sarcolemma stabilization. Journal of Molecular and Cellular Cardiology. 67, 26-37 (2014).
  9. vander Meer, A. D., Orlova, V. V., ten Dijke, P., vanden Berg, A., Mummery, C. L. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab on a Chip. 13, 3562-3568 (2013).
  10. Bidarra, S. J., et al. Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Research. 7, 186-197 (2011).
  11. Campbell, J. J., Davidenko, N., Caffarel, M. M., Cameron, R. E., Watson, C. J. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology. PloS One. 6, 25661 (2011).
  12. Mehes, E., Mones, E., Nemeth, V., Vicsek, T. Collective motion of cells mediates segregation and pattern formation in co-cultures. PloS One. 7, 31711 (2012).
  13. Miki, Y., et al. The advantages of co-culture over mono cell culture in simulating in vivo environment. The Journal of Steroid Biochemistry and Molecular Biology. 131 (3-5), 68-75 (2012).
  14. Moraes, C., Mehta, G., Lesher-Perez, S. C., Takayama, S. Organs-on-a-chip: a focus on compartmentalized microdevices. Annals of Biomedical Engineering. 40 (6), 1211-1227 (2012).
  15. Campbell, J., Davidenko, N., Caffarel, M., Cameron, R., Watson, C. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology. PLoS One. 6, 25661 (2011).
  16. Wu, M. H., Huang, S. B., Lee, G. B. Microfluidic cell culture systems for drug research. Lab on a Chip. 10, 939-956 (2010).
check_url/kr/62913?article_type=t

Play Video

Cite This Article
Li, Z., Hampton, M. J. W., Barajas, M. B., Riess, M. L. Development of a Cell Co-Culture Model to Mimic Cardiac Ischemia/Reperfusion In Vitro. J. Vis. Exp. (176), e62913, doi:10.3791/62913 (2021).

View Video