Summary

人鼻上皮类器官的培养和成像

Published: December 17, 2021
doi:

Summary

这里提出了一个详细的方案来描述来自人类鼻上皮细胞的 体外 类器官模型。该协议具有需要标准实验室设备的测量选项,以及用于专用设备和软件的其他可能性。

Abstract

囊性纤维化(CF)患者的个体化治疗可以通过 体外 疾病模型来实现,以了解基线囊性纤维化跨膜电导调节剂(CFTR)活性和小分子化合物的恢复。我们小组最近专注于建立一种直接来自原代人类鼻上皮细胞(HNE)的良好分化类器官模型。切片类器官的组织学、全装载免疫荧光染色和成像(使用共聚焦显微镜、免疫荧光显微镜和明场)对于表征类器官和确认上皮分化以准备功能测定至关重要。此外,HNE类器官产生与CFTR活性相关的不同大小的管腔,区分CF和非CF类器官。在本手稿中,详细描述了培养HNE类器官的方法,重点是使用成像方式评估分化,包括基线管腔面积的测量(任何具有显微镜的实验室都可以使用的类器官CFTR活性测量方法)以及开发的功能测定的自动化方法(需要更专业的设备)。

Introduction

技术介绍
基于离体培养的检测是精准医学和疾病病理生理学研究中日益常用的工具。原发性人鼻上皮(HNE)细胞培养物已被用于囊性纤维化1234567891011,1213的众多研究中,一种影响多个器官上皮细胞功能的常染色体隐性遗传病。HNE 培养提供可再生的气道上皮来源,可前瞻性地获得,并概括电生理和生化特性,以测试囊性纤维化跨膜传导调节剂 (CFTR) 活性。HNE细胞可以以最小的副作用14进行采样,类似于普通的病毒呼吸道拭子。描述源自HNE刷式活检的囊性纤维化研究模型的研究工作最近发表了1113。虽然与使用原代HNE23和肠组织1516171819的其他模型相似,但此处描述了该模型的分化和成像的详细表征,以用于CF研究和辅助其他气道疾病的研究13.类器官模型不像永生化细胞系那样是无限的,但可以通过条件重编程(使用辐照和灭活的饲养层成纤维细胞和Rho激酶抑制剂)扩展到更像干细胞的状态20212223。使用这种方法处理HNE刷活检可产生大量上皮细胞,用于多种应用,具有更高的通量,同时仍保留完全分化的能力。虽然该方案是使用饲养层细胞开发的,但希望避免使用饲养层细胞技术的研究者可以使用其他方法1424

该技术对肺生物学的重要性
一项重要的研究致力于了解上皮细胞细胞膜中缺乏规则的,功能正常的CFTR如何导致肺,胰腺,肝脏,肠道或其他组织的功能障碍。功能失调的上皮离子转运,特别是氯化物和碳酸氢盐的上皮离子转运,导致上皮衬里液体积减少和粘液分泌物改变,导致粘液淤滞和梗阻。在其他气道疾病中,例如原发性纤毛运动障碍,睫状体运动改变会损害粘膜纤毛清除并导致粘液淤滞和梗阻25。因此,目前的HNE类器官模型已经针对各种应用而开发,这取决于研究者的实验设计和资源。这包括使用活细胞染色剂的活细胞成像;固定和切片以表征形态;用抗体和全贴片共聚焦成像进行免疫荧光染色,以避免破坏腔内结构;和明场成像和微光学相干断层扫描,用于定量测量纤毛搏动频率和粘膜纤毛转运13.为了便于扩展到其他研究者,市售试剂和用品被用于培养。开发了一种功能测定法,使用常见的显微镜技术和更专业的设备。总体而言,虽然本模型被设计为在基线或响应于治疗时评估CFTR活性,但该方案中描述的技术可以应用于涉及上皮细胞功能的其他疾病,特别是上皮细胞液运输。

与其他方法的比较
最近,通过将患者类器官的体外CFTR调节剂反应与其临床反应相关联,开发了这种类器官模型的实用性11。值得注意的是,本模型还证明了在相同患者中并行的短路电流响应,这是评估CFTR功能的当前金标准。短路电流不同于溶胀测定,因为前者通过离子输运26测量CFTR功能。相比之下,该测定测量流体运输的下游效应,提供有关CFTR27,28,29303132的整体功能的额外信息。短路电流测量仍然是确定CFTR氯化物通道活性133的常用可靠方法。这些电生理测定需要专门的昂贵设备,每个实验重复需要比类器官测定多许多倍的细胞,不容易自动化,并且不适合扩大规模以适应更高的通量应用。另一种衍生自肠上皮细胞的类器官模型具有15、161718的附加优点,例如更优异的复制能力,但既不是从气道组织衍生的,也不是普遍可用的。HNE刷牙是用廉价的细胞学刷获得的,无需镇静,风险最小。刷牙不需要临床医生,可以由训练有素的研究协调员和其他研究人员进行14.HNE类器官模型可以由任何具有原代细胞培养能力的实验室进行培养,并且某些应用可以使用标准显微镜技术进行。总而言之,这些优势为评估气道上皮功能提供了额外的技术,否则某些实验室可能无法获得这些技术。此外,HNE类器官可用于研究影响气道的其他疾病状态,例如原发性睫状体运动障碍25或病毒感染,而肠道类器官则不能。

Protocol

HNE样本是在阿拉巴马州儿童医院收集的。此处描述的所有程序和方法均已获得伯明翰阿拉巴马大学IRB(UAB IRB #151030001)的批准。为了促进人鼻上皮细胞(HNEs)的扩增和功能的提高,本培养方法改编自公知的气液界面(ALI)培养方法28,34。如前面描述的12,14所示,最初通过刷子活检收集HNE,唯一的区别是使用…

Representative Results

高净值物质的扩张对于有机物文化的蓬勃发展至关重要。成功采集样本的HNE应在10天左右扩大到超过70%的汇合度。成功和不成功样本的示例分别如图1A和图1B所示。如果细胞在与辐照的3T3细胞共培养14天后不能达到70%汇合,则必须丢弃这些细胞。如果无法用其他抗菌剂快速抢救,任何受污染的细胞都应立即丢弃。 在15孔?…

Discussion

本手稿提供了对源自 HNE 刷式活检的气道上皮类器官进行全面活体和固定成像的详细方法。它描述了可以确定个体CFTR活性的功能测定。HNE为各种应用提供微创的初级组织。这里提供的扩展技术可用于模拟气道疾病,包括类器官。类器官可用于精确治疗方法和监测基于基因或mRNA的疗法随时间推移的稳定性,用于精确试验设计,并帮助解决不确定的诊断39。目前的研究是关于CF的,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们非常感谢所有捐赠HNE刷式活检的参与者为开发该协议所做的贡献。我们感谢Latona Kersh和儿童研究部门的工作人员协调研究志愿者招募和样本收集。我们感谢Lily Deng,Johnathan Bailey和Stephen Mackay,他们是我们实验室的前学员,为他们提供了技术援助。我们感谢刘忠和赵锐的技术帮助。UAB CF研究中心主任Steven M. Rowe提供领导和资源,没有这些,这项工作是不可能的。我们还要感谢Biotek的Sarah Guadiana在仪器培训方面的帮助,Robert Grabski在UAB高分辨率成像设施的共聚焦显微镜协助,以及Dezhi Wang在UAB组织学核心的组织学帮助。这项工作得到了美国国立卫生研究院(NIH)的支持。授予K23HL143167(JSG),囊性纤维化基金会(CFF)授予GUIMBE18A0-Q(授予JSG),Gregory Fleming James囊性纤维化中心[NIH赠款R35HL135816和DK072482以及CFF阿拉巴马大学伯明翰分校(UAB)研发计划(Rowe19RO)]和UAB临床和转化科学中心(NIH赠款UL1TR001417)。

Materials

Nasal brush Medical Packaging CYB1 CYB-1 Length: 8 inches, width approximately 7 mm
Large-Orifice Pipette Tips ThermoFisher Scientific 02-707-141 Large bore pipette tips
Accutase ThermoFisher Scientific A1110501 Cell detachment solution
0.05% trypsin -EDTA Gibco 25300-054
Trypsin inhibitor from soybean Sigma T6522 Working solution: 1mg/mL in 1XDPBS
Matrigel matrix Corning 356255 Extracellular matrix (EM)
µ-Slide Angiogenesis Ibidi 81506 15-well slide
24-Well Transwell Corning 7200154 Culture insert
Chambered Coverglass ThermoFisher Scientific 155409 8-well glass-bottom chamber slides
Cell-Tak Cell and Tissue Adhesive ThermoFisher Scientific 354240 Cell adhesive
Paraformaldehyde Electron Microscopy Sciences 50980487
Triton X-100 Alfa Aesar A16046
BSA ThermoFisher Scientific BP1600-100
NucBlue ThermoFisher Scientific R37605 DAPI
Eclipse Ts2-FL (Inverted Routine Microscope) Nikon Inverted epi-fluorescence microscope or bright-field microscope
Nikon A1R-HD25 Nikon Confocal microscope
NIS Elements- Basic Research Nikon manual imaging analysis software
Histogel ThermoFisher Scientific HG-4000-012
Disposable Base Molds ThermoFisher Scientific 41-740
Lionheart FX BioTek BTLFX Automated image system
Lionheart Cover BioTek BT1450009 Environmental Control Lid
Humidity Chamber BioTek BT1450006 Stage insert (environmental chamber)
Gas Controller for CO2 and O2 BioTek BT1210013 Gas controller
Microplate/Slide Stage Insert BioTek BT1450527 Slide holder
Gen5 Imaging Prime Software BioTek BTGEN5IPRIM Automated imaging analysis software
4x Phase Contrast Objective BioTek BT1320515
10x Phase Contrast Objective BioTek BT1320516
LED Cube BioTek BT1225007
Filter Cube (DAPI) BioTek BT1225100 DAPI
CFTRinh-172 Selleck Chemicals S7139
Forskolin Sigma F6886
IBMX Sigma I5879
Expansion Media
DMEM ThermoFisher Scientific 11965
F12 Nutrient mix ThermoFisher Scientific 11765
Fetal Bovine Serum ThermoFisher Scientific  16140-071
Penicillin/Streptomycin ThermoFisher Scientific  15-140-122
Cholera Toxin Sigma  C8052
Epidermal Growth Factor (EGF) ThermoFisher Scientific  PHG0314
Hydrocortisone (HC) Sigma  H0888
Insulin Sigma  I9278
Adenine Sigma  A2786
Y-27632 Stemgent  04-0012-02
Antibiotic Media
Ceftazidime Alfa Aesar  J66460-03
Tobramycin Alfa Aesar  J67340
Vancomycin Alfa Aesar  J67251
Amphotericin B Sigma  A2942
Differentiation Media
DMEM/F-12 (1:1) ThermoFisher Scientific  11330-32
Ultroser-G Pall  15950-017
Fetal Clone II Hyclone  SH30066.03
Bovine Brain Extract Lonza  CC-4098
Insulin Sigma  I-9278
Hydrocortisone Sigma  H-0888
Triiodothyronine Sigma  T-6397
Transferrin Sigma  T-0665
Ethanolamine Sigma  E-0135
Epinephrine Sigma E-4250
O-Phosphorylethanolamine Sigma P-0503
Retinoic Acid Sigma R-2625
Primary antibodies
Human CFTR antibody R&D Systems MAB1660 Dilution: 100x
ZO-1 antibody Thermo Fisher MA3-39100-A647 Dilution: 1000x
Anti-MUC5B antibody Sigma HPA008246 Dilution: 100x
Anti-acetylated tubulin Sigma T7451 Dilution: 100x
Anti-beta IV Tubulin antibody Abcam Ab11315 Dilution: 100x
Secondary antibodies
Donkey anti-Mouse IgG (H+L), Alexa Fluor 488 Invitrogen A21202 Dilution: 2000x
Donkey anti-Rabbit IgG (H+L), Alexa Fluor 594 Invitrogen A21207 Dilution: 2000x

References

  1. Brewington, J. J., et al. Brushed nasal epithelial cells are a surrogate for bronchial epithelial CFTR studies. JCI Insight. 3 (13), (2018).
  2. Brewington, J. J., et al. Generation of human nasal epithelial cell spheroids for individualized cystic fibrosis transmembrane conductance regulator study. Journal of Visualized Experiments: JoVE. (134), e57492 (2018).
  3. Brewington, J. J., et al. Detection of CFTR function and modulation in primary human nasal cell spheroids. Journal of Cystic Fibrosis. 17 (1), 26-33 (2017).
  4. Bridges, M. A., Walker, D. C., Davidson, A. G. Cystic fibrosis and control nasal epithelial cells harvested by a brushing procedure. In Vitro Cellular & Developmental Biology. 27 (9), 684-686 (1991).
  5. Bridges, M. A., Walker, D. C., Harris, R. A., Wilson, B. R., Davidson, A. G. Cultured human nasal epithelial multicellular spheroids: polar cyst-like model tissues. Biochemistry and Cell Biology. 69 (2-3), 102-108 (1991).
  6. Collie, G., Buchwald, M., Harper, P., Riordan, J. R. Culture of sweat gland epithelial cells from normal individuals and patients with cystic fibrosis. In Vitro Cellular & Developmental Biology. 21 (10), 597-602 (1985).
  7. Conger, B. T., et al. Comparison of cystic fibrosis transmembrane conductance regulator (CFTR) and ciliary beat frequency activation by the CFTR Modulators Genistein, VRT-532, and UCCF-152 in primary sinonasal epithelial cultures. JAMA Otolaryngology-Head & Neck Surgery. 139 (8), 822-827 (2013).
  8. de Courcey, F., et al. Development of primary human nasal epithelial cell cultures for the study of cystic fibrosis pathophysiology. American Journal of Physiology-Cell Physiology. 303 (11), 1173-1179 (2012).
  9. Gruenert, D. C., Basbaum, C. B., Widdicombe, J. H. Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions. In Vitro Cellular & Developmental Biology. 26 (4), 411-418 (1990).
  10. Mosler, K., et al. Feasibility of nasal epithelial brushing for the study of airway epithelial functions in CF infants. Journal of Cystic Fibrosis. 7 (1), 44-53 (2008).
  11. Anderson, J. D., Liu, Z., Odom, L. V., Kersh, L., Guimbellot, J. S. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. The American Journal of Physiology – Lung Cellular and Molecular Physiology. 321 (1), 119-129 (2021).
  12. Guimbellot, J. S., et al. Nasospheroids permit measurements of CFTR-dependent fluid transport. JCI Insight. 2 (22), (2017).
  13. Liu, Z., et al. Human nasal epithelial organoids for therapeutic development in cystic fibrosis. Genes (Basel). 11 (6), (2020).
  14. Muller, L., Brighton, L. E., Carson, J. L., Fischer, W. A., Jaspers, I. Culturing of human nasal epithelial cells at the air liquid interface. Journal of Visualized Experiments: JoVE. , (2013).
  15. Dekkers, J. F., vander Ent, C. K., Beekman, J. M. Novel opportunities for CFTR-targeting drug development using organoids. Rare Diseases. 1, 27112 (2013).
  16. Dekkers, J. F., et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature Medicine. 19 (7), 939-945 (2013).
  17. Okiyoneda, T., et al. Mechanism-based corrector combination restores DeltaF508-CFTR folding and function. Nature Chemical Biology. 9 (7), 444-454 (2013).
  18. Schwank, G., et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13 (6), 653-658 (2013).
  19. Geurts, M. H., et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell. 26 (4), 503-510 (2020).
  20. Bove, P. F., et al. Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. American Journal of Respiratory Cell and Molecular Biology. 50 (4), 767-776 (2014).
  21. Chapman, S., Liu, X., Meyers, C., Schlegel, R., McBride, A. A. Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. Journal of Clinical Investigation. 120 (7), 2619-2626 (2010).
  22. Liu, X., et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. The American Journal of Pathology. 180 (2), 599-607 (2012).
  23. Palechor-Ceron, N., et al. Radiation induces diffusible feeder cell factor(s) that cooperate with ROCK inhibitor to conditionally reprogram and immortalize epithelial cells. The American Journal of Pathology. 183 (6), 1862-1870 (2013).
  24. Scudieri, P., et al. Ionocytes and CFTR chloride channel expression in normal and cystic fibrosis nasal and bronchial epithelial cells. Cells. 9 (9), (2020).
  25. Marthin, J. K., Stevens, E. M., Larsen, L. A., Christensen, S. T., Nielsen, K. G. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium: a simple methodological approach for ex vivo studies of primary ciliary dyskinesia. Cilia. 6, 3 (2017).
  26. Blouquit, S., et al. Ion and fluid transport properties of small airways in cystic fibrosis. American Journal of Respiratory Cell and Molecular Biology. 174 (3), 299-305 (2006).
  27. Birket, S. E., et al. Combination therapy with cystic fibrosis transmembrane conductance regulator modulators augment the airway functional microanatomy. The American Journal of Physiology – Lung Cellular and Molecular Physiology. 310 (10), 928-939 (2016).
  28. Birket, S. E., et al. A functional anatomic defect of the cystic fibrosis airway. American Journal of Respiratory and Critical Care Medicine. 190 (4), 421-432 (2014).
  29. Chu, K. K., et al. Particle-tracking microrheology using micro-optical coherence tomography. Biophysical Journal. 111 (5), 1053-1063 (2016).
  30. Chu, K. K., et al. et al. In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography. Biomedical Optics Express. 7 (7), 2494-2505 (2016).
  31. Liu, L., et al. Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. PLoS One. 8 (1), 54473 (2013).
  32. Tuggle, K. L., et al. Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One. 9 (3), 91253 (2014).
  33. McCravy, M. S., et al. Personalised medicine for non-classic cystic fibrosis resulting from rare CFTR mutations. European Respiratory Journal. 56 (1), 2000062 (2020).
  34. Mutyam, V., et al. Therapeutic benefit observed with the CFTR potentiator, ivacaftor, in a CF patient homozygous for the W1282X CFTR nonsense mutation. Journal of Cystic Fibrosis. 16 (1), 24-29 (2017).
  35. Corning Inc. . CORNING CELL-TAK CELL AND TISSUE ADHESIVE. , (2013).
  36. Anderson, J. D., Liu, Z., Odom, L. V., Kersh, L., Guimbellot, J. S. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. The American Journal of Physiology – Lung Cellular and Molecular Physiology. 321 (1), 119-129 (2021).
  37. Biotek Instruments, Incorporated. . Lionheart FX Live Cell Imager Operator’s Manual. , (2016).
  38. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  39. Simmonds, N. J. Is it cystic fibrosis? The challenges of diagnosing cystic fibrosis. Paediatric Respiratory Reviews. 31, 6-8 (2019).
  40. McGarry, M. E., et al. In vivo and in vitro ivacaftor response in cystic fibrosis patients with residual CFTR function: N-of-1 studies. Pediatric Pulmonology. 52 (4), 472-479 (2017).
  41. Garratt, L. W., et al. Determinants of culture success in an airway epithelium sampling program of young children with cystic fibrosis. Experimental Lung Research. 40 (9), 447-459 (2014).
check_url/kr/63064?article_type=t

Play Video

Cite This Article
Liu, Z., Anderson, J. D., Natt, J., Guimbellot, J. S. Culture and Imaging of Human Nasal Epithelial Organoids. J. Vis. Exp. (178), e63064, doi:10.3791/63064 (2021).

View Video