Summary

通过水射流技术注射猪脂肪组织衍生的基质细胞

Published: November 23, 2021
doi:

Summary

我们提出了一种通过无针水射流技术进行细胞注射的方法,以及细胞活力,增殖和弹性测量方面的交付后研究的后遗症。

Abstract

尿失禁(UI)是一种非常普遍的疾病,其特征在于尿道括约肌缺乏。再生医学分支,特别是细胞疗法,是改善和恢复尿道括约肌功能的新方法。尽管在临床环境中常规通过针头和注射器注射活性功能细胞,但这些方法具有显着的缺点和局限性。在这种情况下,无针水刀(WJ)技术是一种可行且创新的方法,可以通过视觉引导膀胱镜在尿道括约肌中注射活细胞。在本研究中,我们使用WJ将猪脂肪组织来源的基质细胞(pADSC)递送到尸体尿道组织中,并随后研究了WJ递送对细胞产量和活力的影响。我们还通过原子力显微镜(AFM)测量评估了生物力学特征(即弹性)。我们发现,WJ递送的pADSC的细胞弹性显着降低。与对照组相比,存活率明显较低,但仍高于80%。

Introduction

尿失禁 (UI) 是一种广泛存在的疾病,在欧洲人群中患病率为 1.8 – 30.5%,主要表现为尿道括约肌功能障碍。从临床角度来看,当保守疗法或物理治疗无法解决和缓解新出现的症状时,通常会向患者提供手术治疗。

用于括约肌复合物故障的潜在再生修复的细胞疗法已成为治疗UI病理学的前卫方法23。其主要目标是替换,修复和恢复受损组织的生物功能。在UI的动物模型中,干细胞移植在尿动力学结果中显示出有希望的结果245。干细胞作为最佳细胞候选者出现,因为它们具有经历自我更新和多能分化的能力,从而有助于受影响的组织再生6。尽管即将到来的再生潜力,但细胞疗法的实际使用仍然受到阻碍,因为细胞的微创递送仍然面临有关注射精度和靶标覆盖率的几个挑战。尽管目前用于细胞递送的方法是通过针刺系统7注射,但它通常会导致活细胞的整体缺陷,据报道移植后的活力低至1%-31%8。此外,通过针头注射的细胞递送也被证明会影响放置,保留率,以及移植细胞向靶组织91011的分布。克服上述限制的一种可行的新颖方法是通过水射流技术进行无针细胞递送。

水射流(WJ)技术正在成为一种新方法,它能够在尿道括约肌1213的视觉控制下通过膀胱镜高通量递送细胞。WJ可在E5至E8013的不同压力(E = 以巴为单位的效应)下进行细胞递送。在第一阶段,(组织渗透阶段)用高压(即E60或E80)施加等渗溶液,以松动靶向组织周围的细胞外基质并打开小的互连微腔。在第二阶段(注射阶段),压力在几毫秒内降低(即,高达E10),以便将细胞轻轻地输送到靶组织中。在这种两步相施用之后,细胞在射出时不会受到针对组织的额外压力,而是以低压流漂浮到充满液体的海绵状区域13中。在通过WJ将干细胞注射到尸体尿道组织中的离体模型设置中,活细胞随后可以从组织中抽吸并取出并在体外进一步扩增13。尽管Weber等人2020年的一项研究证明了WJ将无足迹心肌细胞输送到心肌14中的可行性和适用性,但必须记住,WJ技术仍处于原型阶段。

以下方案描述了如何制备和标记猪脂肪组织来源的基质细胞(pADSC),以及如何通过WJ技术和威廉姆斯膀胱镜检查针(WN)将它们递送到捕获液和尸体组织中。细胞注射后,通过原子力显微镜(AFM)评估细胞活力和弹性。通过分步说明,该协议提供了一种清晰简洁的方法来获取可靠的数据。讨论部分介绍并描述了该技术的主要优点,局限性和未来前景。WJ细胞递送以及这里报道的翻译后遗症分析正在取代标准的针头注射,并为靶组织的再生愈合提供固体细胞递送框架。在我们最近的研究中,我们提供的证据显示,与针头注射相比,WJ更精确地递送细胞,并且至少具有相当的活力1516

Protocol

猪脂肪组织样本是从图宾根大学实验外科研究所获得的。所有程序均由当地动物福利机构批准,动物实验编号为CU1/16。 1. 猪脂肪组织源性基质细胞的分离 使用从实验外科研究所在50 mL离心管中输送到实验室的猪脂肪组织。 将组织转移到无菌工作台下的无菌培养皿中,并用两把手术刀(10号)将其切碎成小碎片和糊状物。注意:也可以使用剪刀来…

Representative Results

通过两种方法递送细胞后,与使用E60-10设置的WJ注射相比,通过WN递送的细胞的活力(97.2 ±±2%,n = 10,p<0.002)更高(图2)。生物力学评估结果表明:捕获液中细胞的WN注射与对照组(1.176 kPa)相比,弹性模量(EM;0.992 kPa)无显着差异; 图3A),而WJ注射触发了细胞EM的显着降低(0.440 kPa,p<0.001, 图3B)。注意到WJ注射后EM降低40-50%?…

Discussion

在本研究中,我们展示并提出了WJ细胞递送程序的分步方法,并采用定量研究的后遗症来评估WJ递送对细胞特征的影响:细胞活力和生物力学特征(即EM)。注射WJ后,85.9%的收获细胞是活的。在WN注射方面,97.2%的细胞在注射后保持其活力。因此,WJ方法满足了临床实施的绝对要求:超过80%的活细胞在递送后18。虽然使用WJ方法实现了标准化和可重复的方案,但针头注射的结果高度?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢原始出版物的合著者的帮助和支持。

Materials

50 mL centrifuge tube Greiner BioOne 227261
1 mL BD Luer-LokTM Syringe BD Plastik Inc n.a.
100 µm cell sieve Greiner BioOne 542000
15 mL centrifuge tube Greiner BioOne 188271
75 cm2 tissue culture flask Corning Incorporated 353136
AFM head (CellHesion 200) JPK JPK00518
AFM processing software Bruker JPK00518
AFM software Bruker JPK00518
AFM system Cell Hesion 200 Bruker JPK00518
All-In-One-Al cantilever Budget Sensors AIO-10 tip A, Conatct Mode, Shape: Beam
Force Constant: 0.2 N/m (0.04 – 0.7 N/m)
Resonance Frequency: 15 kHz (10 – 20 kHz)
Length: 500 µm (490 – 510 µm)
Width: 30 µm (35 – 45 µm)
Thickness: 2.7 µm (1.7 – 3.7 µm)
Amphotericin B solution Sigma A2942 250 µg/ml
Atomic Force Microscope (AFM) CellHesion 200, JPK Instruments, Berlin, Germany JPK00518
BD Microlance 3 18G BD 304622
bovine serum albumin Gibco A10008-01
Cantilever  All-In-One-AleTl, Budget Sensors, Sofia, Bulgaria AIO-TL-10 tip A, k ¼ 0.2 N/m
C-chip disposable hemocytometer NanoEnTek 631-1098
centrifuge: Rotina 420R Hettich Zentrifugen
Collagenase, Type I, powder Gibco 17100-017
Dulbecco’s Modified Eagle’s Medium – low glucose Sigma D5546
Feather disposable scalpel (No. 10) Feather 02.001.30.010
fetal bovine serum (FBS) Sigma F7524
HEPES sodium salt solution (1 M) Sigma H3662
Inverted phase contrast microscope (Integrated with AFM) AxioObserver D1, Carl Zeiss Microscopy, Jena, Germany L201306_03
laboratory bags Brand 759705
Leibovitz's L-15 medium without l-glutamine Merck F1315
Leibovitz's L-15 medium without L-glutamine (Merck KGaA, Darmstadt, Germany) F1315
L-glutamine Lonza BE 17-605C1 200 mM
LIVE/DEADTM Viability/Cytotoxicity Kit Invitrogen by Thermo Fisher Scientific L3224 Calcein AM and EthD-1 are used from this kit.
Microscope software: Zen 2.6 Zeiss
Microscope: AxioVertA.1 Zeiss
Nelaton-Catheter female Bicakcilar 19512051
Penicillin-Streptomycin Gibco 15140-122 10000 U/ml Penicillin
10000 µg/ml Streptomycin
Petri dish heater associated with AFM Bruker T-05-0117
Petri dish heater associated with AFM JPK Instruments AG, Berlin, Germany T-05-0117
Phosphate buffered saline (PBS) Gibco 10010-015
Statistical Software: SPSS Statistics 22 IBM
Sterile Petri dish – CellStar Greiner BioOne 664160
Tissue culture dishes TPP AG TPP93040
Tissue culture dishes TPP Techno Plastic Products AG, Trasadingen, Switzerland TPP93040
Trypan Blue 0.4%
0.85% NaCl
Lonza 17-942E
Trypsin-EDTA solution Sigma T3924
Waterjet: ERBEJET2 device Erbe Elektromedizin GmbH
Williams Cystoscopic Injection Needle Cook Medical G14220 23G, 5.0 Fr, 35 cm

References

  1. Milsom, I., et al. Global prevalence and economic burden of urgency urinary incontinence: a systematic review. European Urology. 65 (1), 79-95 (2014).
  2. Lee, J. Y., et al. The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. International Urogynecology Journal and Pelvic Floor Dysfunction. 14 (1), 31-37 (2003).
  3. Tran, C., Damaser, M. S. The potential role of stem cells in the treatment of urinary incontinence. Therapeutic Advances in Urology. 7 (1), 22-40 (2015).
  4. Fu, Q., Song, X. F., Liao, G. L., Deng, C. L., Cui, L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology. 75 (3), 718-723 (2010).
  5. Corcos, J., et al. marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourology and Urodynamics. 30 (3), 447-455 (2011).
  6. Smaldone, M. C., Chen, M. L., Chancellor, M. B. Stem cell therapy for urethral sphincter regeneration. Minerva Urologica e Nefrologica. 61 (1), 27-40 (2009).
  7. Perin, E. C., López, J. Methods of stem cell delivery in cardiac diseases. Nature Clinical Practice Cardiovascular Medicine. 3, 110-113 (2006).
  8. Zhang, M., et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. Journal of Molecular and Cellular Cardiology. 33 (5), 907-921 (2001).
  9. Amer, M. H., White, L. J., Shakesheff, K. M. The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. Journal of Pharmacy and Pharmacology. 67 (5), 640-650 (2015).
  10. Amer, M. H., Rose, F. R. A. J., Shakesheff, K. M., Modo, M., White, L. J. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regenerative Medicine. 2, 23-23 (2017).
  11. Linzenbold, W., Fech, A., Hofmann, M., Aicher, W. K., Enderle, M. D. Novel Techniques to Improve Precise Cell Injection. International Journal of Molecular Sciences. 22 (12), 6367 (2021).
  12. Adamo, A., Roushdy, O., Dokov, R., Sharei, A., Jensen, K. F. Microfluidic jet injection for delivering macromolecules into cells. Journal of Micromechanics and Microengineering: Structures, Devices, and Systems. 23, 035026 (2013).
  13. Jäger, L., et al. A novel waterjet technology for transurethral cystoscopic injection of viable cells in the urethral sphincter complex. Neurourology and Urodynamics. 39 (2), 594-602 (2020).
  14. Weber, M., et al. Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium. Scientific Reports. 10 (1), 16787 (2020).
  15. Jäger, L., et al. A novel waterjet technology for transurethral cystoscopic injection of viable cells in the urethral sphincter complex. Neurourology and Urodynamics. 39 (2), 594-602 (2020).
  16. Linzenbold, W., et al. Rapid and precise delivery of cells in the urethral sphincter complex by a novel needle-free waterjet technology. BJU International. 127 (4), 463-472 (2021).
  17. Danalache, M., Tiwari, A., Sigwart, V., Hofmann, U. K. Application of Atomic Force Microscopy to Detect Early Osteoarthritis. Journal of Visualized Experiments. (159), e61041 (2020).
  18. Gálvez-Martín, P., Hmadcha, A., Soria, B., Calpena-Campmany, A. C., Clares-Naveros, B. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia. European Journal of Pharmaceutics and Biopharmaceutics. 86 (3), 459-468 (2014).
  19. Danalache, M., et al. Injection of Porcine Adipose Tissue-Derived Stromal Cells by a Novel Waterjet Technology. International Journal of Molecular Sciences. 22 (8), (2021).
  20. Amend, B., et al. Precise injection of human mesenchymal stromal cells in the urethral sphincter complex of Göttingen minipigs without unspecific bulking effects. Neurourology and Urodynamics. 36 (7), 1723-1733 (2017).
  21. Danalache, M., et al. Injection of Porcine Adipose Tissue-Derived Stromal Cells by a Novel Waterjet Technology. International Journal of Molecular Sciences. 22 (8), 3958 (2021).
  22. Strasser, H., et al. 328: Transurethral Ultrasound Guided Stem Cell Therapy of Urinary Incontinence. Journal of Urology. 175 (4), 107 (2006).
  23. Vining, K. H., Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nature reviews. Molecular Cell Biology. 18 (12), 728-742 (2017).
  24. Ding, Y., Xu, G. -. K., Wang, G. -. F. On the determination of elastic moduli of cells by AFM based indentation. Scientific Reports. 7 (1), 45575 (2017).
  25. Charras, G. T., Horton, M. A. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophysical Journal. 82 (6), 2970-2981 (2002).
  26. Carl, P., Schillers, H. Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflügers Archiv: European Journal of Physiology. 457 (2), 551-559 (2008).
  27. Darling, E. M., Topel, M., Zauscher, S., Vail, T. P., Guilak, F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. Journal of Biomechanics. 41 (2), 454-464 (2008).
  28. Thomas, G., Burnham, N. A., Camesano, T. A., Wen, Q. Measuring the mechanical properties of living cells using atomic force microscopy. Journal of Visualized Experiments. (76), e50497 (2013).
  29. Li, M., Dang, D., Liu, L., Xi, N., Wang, Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience. 16 (6), 523-540 (2017).
  30. Morimoto, A., et al. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. The Journal of Cell Biology. 198 (2), 165 (2012).
  31. Lombardi, M. L., et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. Journal of Biological Chemistry. 286 (30), 26743-26753 (2011).
  32. Isermann, P., Lammerding, J. Nuclear Mechanics and Mechanotransduction in Health and Disease. Current Biology. 23 (24), 1113-1121 (2013).
  33. Méjat, A. LINC complexes in health and disease. Nucleus. 1 (1), 40-52 (2010).
  34. Folker, E. S., Östlund, C., Luxton, G. G., Worman, H. J., Gundersen, G. G. Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proceedings of the National Academy of Sciences. 108 (1), 131-136 (2011).
  35. Guilluy, C., et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nature cell biology. 16 (4), 376-381 (2014).
  36. Fischer, T., Hayn, A., Mierke, C. T. Effect of Nuclear Stiffness on Cell Mechanics and Migration of Human Breast Cancer Cells. Frontiers in Cell and Developmental Biology. 8, 393 (2020).
  37. Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A., Zhdanov, R. I. Atomic force microscopy probing of cell elasticity. Micron. 38 (8), 824-833 (2007).
  38. Schillers, H., et al. Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples. Scientific Reports. 7 (1), 5117 (2017).
  39. Costa, K. D., Yin, F. C. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. Journal of Biomechanical Engineering. 121 (5), 462-471 (1999).
  40. Stolz, M., et al. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophysical Journal. 86 (5), (2004).
  41. Park, S., Costa, K. D., Ateshian, G. A., Hong, K. S. Mechanical properties of bovine articular cartilage under microscale indentation loading from atomic force microscopy. Proceedings of the Institution of Mechanical Engineers, Part H. 223 (3), 339-347 (2009).
  42. Usukura, E., Narita, A., Yagi, A., Ito, S., Usukura, J. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy. Scientific Reports. 6 (1), 27472 (2016).
check_url/kr/63132?article_type=t

Play Video

Cite This Article
Knoll, J., Danalache, M., Linzenbold, W., Enderle, M., Abruzzese, T., Stenzl, A., Aicher, W. K. Injection of Porcine Adipose Tissue-Derived Stroma Cells via Waterjet Technology. J. Vis. Exp. (177), e63132, doi:10.3791/63132 (2021).

View Video