Summary

Drosophila melanogaster Protocole d’injection de larves

Published: October 19, 2021
doi:

Summary

Les mouches adultes Drosophila melanogaster ont été largement utilisées comme organismes modèles pour étudier les mécanismes moléculaires sous-jacents aux réponses immunitaires innées antimicrobiennes de l’hôte et les stratégies d’infection microbienne. Pour promouvoir le stade larvaire de D. melanogaster en tant que système modèle supplémentaire ou alternatif, une technique d’injection larvaire est décrite.

Abstract

L’utilisation de modèles non conventionnels pour étudier l’immunité innée et la virulence des agents pathogènes constitue une alternative précieuse aux modèles de mammifères, ce qui peut être coûteux et soulever des questions éthiques. Les modèles non conventionnels sont notoirement bon marché, faciles à manipuler et à cultiver, et ne prennent pas beaucoup de place. Ils sont génétiquement disponibles et possèdent des séquences complètes du génome, et leur utilisation ne présente aucune considération éthique. La mouche des fruits Drosophila melanogaster, par exemple, a fourni d’excellentes informations sur une variété de recherches sur le comportement, le développement, le métabolisme et l’immunité. Plus précisément, les mouches adultes et les larves de D. melanogaster possèdent plusieurs réactions de défense innées qui sont partagées avec les animaux vertébrés. Les mécanismes régulant les réponses immunitaires ont été principalement révélés par des études génétiques et moléculaires dans le modèle de D. melanogaster . Ici, une nouvelle technique d’injection larvaire est fournie, qui favorisera davantage les recherches sur les processus immunitaires innés chez les larves de D. melanogaster et explorera la pathogenèse d’un large éventail d’infections microbiennes.

Introduction

Drosophila melanogaster a été immensément utilisé dans la recherche biologique et biomédicale pendant plusieurs décennies, car la gamme sophistiquée d’outils génétiques et moléculaires a progressivement évolué pour l’analyse d’un large éventail d’études1,2,3,4. Les aspects du développement, de l’homéostasie et de l’immunité innée conservés sur le plan évolutif chez D. melanogaster en ont fait un organisme modèle précieux pour l’étude de diverses maladies humaines et d’insectes5,6. Notamment, le rôle fondamental du modèle de D. melanogaster pour l’étude de l’immunité a été largement illustré dans les études sur les mouches adultes. Cependant, les études sur les larves de D. melanogaster ont également contribué aux connaissances actuelles et ont principalement exploré les réponses immunitaires cellulaires, en particulier pour les infections à guêpes et aux nématodes qui se produisent par la cuticule de l’insecte7,8,9,10. Les larves de Drosophila melanogaster possèdent trois types différents de cellules sanguines, collectivement appelées hémocytes : plasmatocytes, cellules cristallines et lamellocytes11,12,13. Ces cellules peuvent monter un éventail de réponses immunitaires lorsque les larves de D. melanogaster sont infectées par des agents pathogènes tels que des bactéries, des champignons, des virus et des parasites14,15,16. Les réponses immunitaires cellulaires comprennent l’engloutissement direct (phagocytose) de petites molécules ou bactéries, la mélanisation, l’encapsulation d’agents pathogènes plus gros tels que les œufs parasitoïdes et la production d’espèces réactives de l’oxygène (ROS) et de synthases d’oxyde nitrique (NOS)17,18,19.

En revanche, moins d’études ont été publiées sur l’utilisation du modèle larvaire de D. melanogaster pour analyser les réponses immunitaires humorales. Cela est principalement dû à l’application de tests d’alimentation pour l’infection orale des larves de D. melanogaster et à plusieurs défis associés à la microinjection des larves, y compris la manipulation précise des larves et l’utilisation appropriée de la micro-aiguille, en particulier pendant la pénétration20,21. Ainsi, la connaissance limitée de l’infection larvaire et les difficultés techniques (c.-à-d. mortalité élevée) ont souvent rendu le modèle larvaire de D. melanogaster difficile à utiliser. Un modèle larvaire aura le potentiel d’identifier de nouveaux mécanismes moléculaires qui fourniront des informations supplémentaires sur les interactions hôte-pathogène et l’induction de réponses immunitaires innées spécifiques de l’hôte contre les infections pathogènes.

Ici, un protocole simple et efficace qui peut être utilisé pour injecter aux larves de D. mélanogasster divers agents pathogènes, tels que des bactéries, est décrit en détail. En particulier, les larves de D. melanogaster sont utilisées pour les injections avec l’agent pathogène humain Photorhabdus asymbiotica et la bactérie non pathogène Escherichia coli. Cette méthode peut être utilisée pour la manipulation et l’analyse des réponses immunitaires de D. melanogaster à diverses infections microbiennes.

Protocol

1. Élevage à la mouche REMARQUE: Le cycle de vie de D. melanogaster est divisé en quatre étapes: embryon, larve, nymphe et adulte. Le temps de génération avec des conditions d’élevage optimales en laboratoire (~ 25 ° C, 60% d’humidité et suffisamment de nourriture) est d’environ 10 jours entre l’œuf fécondé et l’adulte éclos. Les femelles pondent environ 100 embryons par jour et l’embryogenèse dure environ 24 h22. Les la…

Representative Results

Lorsqu’elles sont effectuées correctement, les injections de larves de D. melanogaster montrent un effet spécifique à la bactérie. Les données de survie ont été recueillies à plusieurs moments à la suite d’infections à P. asymbiotica (souche ATCC43943), à E. coli (souche K12) et à PBS (figure 4). Alors que les larves de D. melanogaster sont sensibles à P. asymbiotica, ce qui compromet rapidement la survie, les larves injectées av…

Discussion

Drosophila melanogaster est l’un des modèles les plus précieux et les plus manipulés expérimentalement utilisés pour étudier l’immunité innée et la pathogenèse de diverses infections microbiennes. Cela est dû à son cycle de vie simple et rapide, à son entretien simple en laboratoire, à sa génétique évolutive bien établie et à sa boîte à outils génétique diversifiée. Les méthodes antérieures d’injection de larves de D. melanogaster, telles que l’utilisation d’un disposi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Nous remercions les membres du Département des sciences biologiques de l’Université George Washington (GWU) pour leur lecture critique du manuscrit. GT a été soutenu par une bourse d’été Harlan de GWU. Toutes les figures graphiques ont été réalisées à l’aide de BioRender.

Materials

Fly Food B (Bloomington Recipe) LabExpress 7001-NV Food B, in narrow vials, 100 vials/tray
100 x 15, Mono Petri Dishes Fully Stackable VWR 25384-342 Diameter 100 x 15 mm
60 x 15, Mono Petri dishes Fully Stackable VWR 25384-092 Diameter 60 x 15 mm
Glass capillaries VWR 53440-186
Grade 1 qualitative filter paper standard grade, circle VWR 28450-150 Diameter 150 mm
Lab culture Class II Type A2 Biosafety Safety Cabinet ESCO LA2-4A2-E
LB Agar Fisher Scientific BP1425-500 LB agar miller powder 500 g
LB Broth Fisher Scientific BP1426-500 LB broth miller powder 500 g
Mineral oil Alfa Aesar, Thermo Fisher Scientific 31911-A1
NanoDrop 2000/2000c Spectrophotometer Thermo Fisher Scientific ND-2000C
Nanoject III Programmable Nanoliter Injector Drummond 3-000-207
Narrow Drosophila Vials, Polystyrene Genesee Scientific 32-109
Needles, hypodermic VWR 89219-316 22 G, 25 mm
Next Generation Micropipette Puller World Precision Instruments SU-P1000
PBS VWR 97062-732 Buffer PBS tablets biotech grade 200tab
Prism GraphPad Version 8
Syringes – plastic, disposable VWR 76124-652 20 mL
Trypan Blue Sigma-Aldrich T8154

References

  1. Takehana, A., et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proceedings of the National Academy of Sciences of the United States of America. 99 (21), 13705-13710 (2002).
  2. Senger, K., Harris, K., Levine, M. GATA factors participate in tissue-specific immune responses in Drosophila larvae. Proceedings of the National Academy of Sciences of the United States of America. 103 (43), 15957-15962 (2006).
  3. Kenmoku, H., Hori, A., Kuraishi, T., Kurata, S. A novel mode of induction of the humoral innate immune response in Drosophila larvae. Disease Models & Mech.anisms. 10, 271-281 (2017).
  4. Kenney, E., Hawdon, J. M., O’Halloran, D., Eleftherianos, I. Heterorhabditis bacteriophora excreted-secreted products enable infection by Photorhabdus luminescens through suppression of the Imd pathway. Frontiers in Immunology. 10, 2372 (2019).
  5. Cherry, S., Silverman, N. Host-pathogen interactions in Drosophila: New tricks from an old friend. Nature Immunology. 7 (9), 911-917 (2006).
  6. Younes, S., Al-Sulaiti, A., Nasser, E., Najjar, H., Kamareddine, L. Drosophila as a model organism in host-pathogen interaction studies. Frontiers in Cellular and Infection Microbiology. 10, 214 (2020).
  7. Kenney, E., Hawdon, J. M., O’Halloran, D. M., Eleftherianos, I. Secreted virulence factors from Heterorhabditis bacteriophora highlight its utility as a model parasite among Clade V nematodes. International Journal for Parasitology. 51 (5), 321-325 (2021).
  8. Castillo, J. C., Reynolds, S. E., Eleftherianos, I. Insect immune responses to nematode parasites. Trends in Parasitology. 27 (12), 537-547 (2011).
  9. Leitão, A. B., Bian, X., Day, J. P., Pitton, S., Demir, E., Jiggins, F. M. Independent effects on cellular and humoral immune responses underlie genotype-by-genotype interactions between Drosophila and parasitoids. PLoS Pathogens. 15 (10), 1008084 (2019).
  10. Ramroop, J. R., Heavner, M. E., Razzak, Z. H., Govind, S. A. Parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host’s blood cells. PLoS Pathogens. 17 (5), 1009615 (2021).
  11. Vlisidou, I., Wood, W. Drosophila blood cells and their role in immune responses. The FEBS Journal. 282 (8), 1368-1382 (2015).
  12. Harnish, J. M., Link, N., Yamamoto, S. Drosophila as a model for infectious diseases. International Journal of Molecular Sciences. 22 (5), 2724 (2017).
  13. Lemaitre, B., Hoffmann, J. The host defense of Drosophila melanogaster. Annual Reviews of Immunology. 25, 697-743 (2007).
  14. Garriga, A., Mastore, M., Morton, A., Pino, F. G., Brivio, M. F. Immune response of Drosophila suzukii larvae to infection with the nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila. Insects. 11 (4), 210 (2020).
  15. Trienens, M., Kraaijeveld, K., Wertheim, B. Defensive repertoire of Drosophila larvae in response to toxic fungi. Molecular Ecology. 26 (19), 5043-5057 (2017).
  16. Tafesh-Edwards, G., Eleftherianos, I. Drosophila immunity against natural and nonnatural viral pathogens. Virology. 540, 165-171 (2020).
  17. Gold, K. S., Brückner, K. Macrophages and cellular immunity in Drosophila melanogaster. Seminars in Immunology. 27 (6), 357-368 (2015).
  18. Dudzic, J. P., Kondo, S., Ueda, R., Bergman, C. M., Lemaitre, B. Drosophila innate immunity: regional and functional specialization of prophenoloxidases. BMC Biology. 13, 81 (2015).
  19. Honti, V., Csordás, G., Kurucz, &. #. 2. 0. 1. ;., Márkus, R., Andó, I. The cell-mediated immunity of Drosophilamelanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Developmental and Comparative Immunology. 42 (1), 47-56 (2014).
  20. Siva-Jothy, J. A., Prakash, A., Vasanthakrishnan, R. B., Monteith, K. M., Vale, P. F. Oral bacterial infection and shedding in Drosophila melanogaster. Journal of Visualized Experiments: JoVE. (135), e57676 (2021).
  21. Zabihihesari, A., Hilliker, A. J., Rezai, P. Localized microinjection of intact Drosophila melanogaster larva to investigate the effect of serotonin on heart rate. Lab on a Chip. 20 (2), 343-355 (2020).
  22. Flatt, T. Life-history evolution and the genetics of fitness components in Drosophila melanogaster. 유전학. 214 (1), 3-48 (2020).
  23. Ciche, T. A., Sternberg, P. W. Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. BMC Developmental Biology. 7, 101 (2007).
  24. Joyce, S. A., Watson, R. J., Clarke, D. J. The regulation of pathogenicity and mutualism in Photorhabdus. Current Opinion in Microbiology. 9 (2), 127-132 (2006).
  25. Yang, G., Waterfield, N. R. The role of TcdB and TccC subunits in secretion of the Photorhabdus Tcd toxin complex. PLoS Pathogens. 9 (10), 1003644 (2013).
  26. Shokal, U., et al. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiology. 16, 16 (2016).
  27. Tomoyasu, Y., Denell, R. E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Development Genes and Evolution. 214 (11), 575-578 (2004).
check_url/kr/63144?article_type=t

Play Video

Cite This Article
Tafesh-Edwards, G., Kenney, E., Eleftherianos, I. Drosophila melanogaster Larva Injection Protocol. J. Vis. Exp. (176), e63144, doi:10.3791/63144 (2021).

View Video