Summary

在几种肾脏疾病小鼠模型中使用聚乙烯亚胺纳米颗粒将外源人工合成的miRNA模拟物递送到肾脏

Published: May 10, 2022
doi:

Summary

在这里,我们通过在几种肾脏疾病小鼠模型中通过尾静脉注射非病毒载体和聚乙烯亚胺纳米颗粒 外源人工合成的miRNA模拟物输送到肾脏。这导致靶miRNA在肾脏中的显着过表达,导致几种小鼠模型中肾脏疾病的进展受到抑制。

Abstract

microRNA(miRNA)是未翻译成蛋白质的小非编码RNA(21-25个碱基),通过破坏和抑制它们在各种肾脏疾病中的翻译来抑制大量靶信使RNA(mRNA)。因此,通过外源人工合成的miRNA模拟物交替表达miRNA是抑制许多肾脏疾病发展的潜在有用治疗选择。然而,由于血清RNA酶会立即降解体内系统施用的外源性miRNA模拟 物,因此将miRNA递送到肾脏仍然是一个挑战。因此,能够保护外源性miRNA模拟物免受RNA酶降解并显着将其递送到肾脏的载体是必要的。许多研究使用病毒载体将外源性miRNA模拟物或抑制剂递送到肾脏。然而,病毒载体可能导致干扰素反应和/或遗传不稳定。因此,病毒载体的开发也是临床使用外源性miRNA模拟物或抑制剂的障碍。为了克服这些关于病毒载体的担忧,我们开发了一种非病毒载体方法,使用尾静脉注射聚乙烯亚胺纳米颗粒(PEI-NPs)将miRNA模拟物递送到肾脏,这导致靶miRNA在几种肾脏疾病小鼠模型中显着过表达。

Introduction

miRNA,即未翻译成蛋白质的小非编码RNA(21-25个碱基),通过破坏它们在各种肾脏疾病中的翻译来抑制大量靶信使RNA(mRNA)12。因此,采用外源性人工合成的miRNA模拟物或抑制剂的基因治疗是抑制许多肾脏疾病发展的潜在新选择345

尽管miRNA模拟物或抑制剂有望用于基因治疗,但递送到靶器官仍然是体内实验开发其临床潜力的一大障碍。由于人工合成的miRNA模拟物或抑制剂会立即被血清RNA酶降解,因此在体内全身施用时,它们的半衰期缩短6此外,如果没有合适的载体,miRNA模拟物或抑制剂穿过质膜和转染细胞质的效率通常要低得多78。这些证据表明,需要开发miRNA模拟物或肾脏抑制剂递送系统,使其能够在临床环境中使用,并使其成为各种肾脏疾病患者的新治疗选择。

病毒载体已被用作载体,将外源性miRNA模拟物或抑制剂递送到肾脏910。尽管病毒载体是为生物安全性和转染功效而开发的,但仍可能导致干扰素反应和/或遗传不稳定1112。为了克服这些问题,我们在几种肾脏疾病小鼠模型中使用聚乙烯亚胺纳米颗粒(PEI-NPs)开发了miRNA模拟肾脏递送系统131415

PEI-NPs是基于线性聚合物的NPs,可以有效地将寡核苷酸(包括miRNA模拟物)递送到肾脏,并且由于其长期安全性和生物相容性,被认为是制备非病毒载体的首选131617

本研究证明了系统外源miRNA通过尾静脉注射模拟PEI-NPs递送对单侧输尿管梗阻(UUO)产生的肾纤维化模型小鼠的影响。此外,我们证明了系统外源miRNA模拟物通过尾静脉注射PEI-NPs递送在糖尿病肾病模型小鼠(db / db小鼠:C57BLKS / J Iar -+Lepr db / + Leprdb)和由肾缺血再灌注损伤(IRI)产生的急性肾损伤模型小鼠中的影响。

Protocol

所有动物实验方案均经吉智医科大学动物伦理委员会批准,并按照《吉智医科大学实验动物指南》中的实验动物使用和护理指南进行。在这里,我们证明了miRNA模拟递送到肾脏,导致其使用UUO小鼠过表达。本研究已获得吉智医科大学伦理委员会批准[肾纤维化批准号19-12,急性肾脏感染(AKI)批准17-024,糖尿病肾病批准19-11]。 1. PEI-NPs-miRNA模拟复合物的制备 <p class=…

Representative Results

根据微阵列、qRT-PCR 和/或基因治疗应用的数据库研究,选择了下面描述的用于肾纤维化、糖尿病肾病和 AKI 的靶 miRNA。有关更多详细信息,请参阅以前的出版物13,14,15。 使用PEI-NPs的miRNA-146a-5p模拟物在肾纤维化小鼠中的递送和作用13荧光显微镜分析表明,尾?…

Discussion

使用本手稿中提出的方案,PEI-NPs可以将miRNA模拟物递送到肾脏以诱导靶miRNA的过表达,从而在几种肾脏疾病的 体内小鼠模型中 产生治疗效果,包括肾纤维化,糖尿病肾病和AKI。

制备PEI-NPs和miRNA模拟物复合物的方法非常简单。PEI-NPs的带正电荷的表面在刚刚混合13,141516<sup class=…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了JSPS KAKENHI的部分支持(批准号21K08233)。我们感谢Edanz (https://jp.edanz.com/ac)编辑这份手稿的草稿。

Materials

4’,6-diamidino-2-phenylindole for staining to nucleus Thermo Fisher Scientific D-1306
Buffer RPE Qiagen 79216 Wash buffer 2
Buffer RWT Qiagen 1067933 Wash buffer 1
Control-miRNA-mimic (artificially synthesized miRNA) Thermo Fisher Scientific Not assigned 5’-UUCUCCGAACGUGUCACGUTT- 3’ (sense)
5’-ACGUGACACGUUCGGAGAATT-3′ (antisense)
Cy3-labeled double-strand oligonucleotides Takara Bio Inc. MIR7900
Fluorescein-labeled Lotus tetragonolobus lectin Vector Laboratories Inc FL-1321
In vivo-jetPEI Polyplus 101000021
MicroAmp Optical 96-well reaction plate for qRT-PCR Thermo Fisher Scientific 4316813 96-well reaction plate
MicroAmp Optical Adhesive Film Thermo Fisher Scientific 4311971 Adhesive film for 96-well reaction plate
miRNA-146a-5p mimic (artificially synthesized miRNA) Thermo Fisher Scientific Not assigned 5’-UGAGAACUGAAUUCCAUGGGU
UT-3′ (sense) 5’-CCCAUGGAAUUCAGUUCUCAUU -3′ (antisense)
miRNA-146a-5p primer Qiagen MS00001638 Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021)
miRNA-181b-5p mimic (artificially synthesized miRNA) Gene design Not assigned 5’-AACAUUCAUUGCUGUCGGUGG
GUU-3’
miRNA-181b-5p primer Qiagen MS00006083 Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021)
miRNA-5100-mimic (artificially synthesized miRNA) Gene design Not assigned 5’-UCGAAUCCCAGCGGUGCCUCU -3′
miRNA-5100-primer Qiagen MS00042952 Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021)
miRNeasy Mini kit Qiagen 217004 Membrane anchored spin column in a 2.0-mL collection tube
miScript II RT kit Qiagen 218161 Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021)
miScript SYBR Green PCR kit Qiagen 218073 Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021)
QIA shredder Qiagen 79654 Biopolymer spin columns in a 2.0-mL collection tube
QIAzol Lysis Reagent Qiagen 79306 Phenol/guanidine-based lysis reagent
QuantStudio 12K Flex Flex Real-Time PCR system Thermo Fisher Scientific 4472380 Real-time PCR instrument
QuantStudio 12K Flex Software version 1.2.1. Thermo Fisher Scientific 4472380 Real-time PCR instrument software
RNase-free water Qiagen 129112
RNU6-2 primer Qiagen MS00033740 Not available because Qiagen has changed qRT-PCR kits (from miScript miRNA PCR system to miRCURY LNA miRNA PCR System from May 2021)
Tissue-Tek OCT (Optimal Cutting Temperature Compound) Sakura Finetek Japan Co.,Ltd. Not assigned

References

  1. Mohr, A. M., Mott, J. L. Overview of microRNA biology. Seminars in Liver Disease. 35 (1), 3-11 (2015).
  2. Bushati, N., Cohen, S. M. microRNA functions. Annual Review of Cell and Developmental Biology. 23, 175-205 (2007).
  3. Simpson, K., Wonnacott, A., Fraser, D. J., Bowen, T. microRNAs in diabetic nephropathy: From biomarkers to therapy. Current Diabetes Reports. 16 (3), 35 (2016).
  4. Yheskel, M., Patel, V. Therapeutic microRNAs in polycystic kidney disease. Current Opinion in Nephrology and Hypertension. 26 (4), 282-289 (2017).
  5. Lv, W., et al. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiological Genomics. 50 (1), 20-34 (2018).
  6. Dykxhoorn, D. M., Lieberman, J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annual Review of Medicine. 56, 401-423 (2005).
  7. Dykxhoorn, D. M., Palliser, D., Lieberman, J. The silent treatment: siRNAs as small molecule drugs. Gene Therapy. 13 (6), 541-552 (2006).
  8. Stewart, S. A., et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. 9 (4), 493-501 (2003).
  9. Deng, M., et al. Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiled-coil kinase signaling pathway. Molecular Medicine Reports. 12 (1), 45-54 (2015).
  10. Zhou, Y., et al. Suppressor of cytokine signaling (SOCS) 2 attenuates renal lesions in rats with diabetic nephropathy. Acta Histochemica. 116 (5), 981-988 (2014).
  11. Tenenbaum, L., Lehtonen, E., Monahan, P. E. Evaluation of risks related to the use of adeno-associated virus-based vectors. Current Gene Therapy. 3 (6), 545-565 (2003).
  12. Lukashev, A. N., Zamyatnin, A. A. Viral vectors for gene therapy: Current state and clinical perspectives. Biochemistry. Biokhimiia. 81 (7), 700-708 (2016).
  13. Morishita, Y., et al. Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo. International Journal of Nanomedicine. 10, 3475-3488 (2015).
  14. Ishii, H., et al. MicroRNA expression profiling in diabetic kidney disease. Translational Research: The Journal of Laboratory and Clinical. 237, 31-52 (2021).
  15. Aomatsu, A., et al. MicroRNA expression profiling in acute kidney injury. Translational Research: The Journal of Laboratory and Clinical. (21), 00283-00288 (2021).
  16. Lungwitz, U., Breunig, M., Blunk, T., Gopferich, A. Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmceutics and Biopharmaceutics. 60 (2), 247-266 (2005).
  17. Swami, A., et al. A unique and highly efficient nonviral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles. Biochemical and Biophysical Research Communications. 362 (4), 835-841 (2007).
  18. Kaneko, S., et al. Detection of microRNA expression in the kidneys of immunoglobulin a nephropathic mice. Journal of Visualized Experiments: JoVE. (161), e61535 (2020).
  19. Yanai, K., et al. Quantitative real-time PCR evaluation of microRNA expressions in mouse kidney with unilateral ureteral obstruction. Journal of Visualized Experiments: JoVE. (162), e61383 (2020).
  20. Aomatsu, A., et al. A quantitative detection method for microRNAs in the kidney of an ischemic kidney injury mouse model. Journal of Visualized Experiments: JoVE. (163), e61378 (2020).
  21. Kushibiki, T., Nagata-Nakajima, N., Sugai, M., Shimizu, A., Tabata, Y. Enhanced anti-fibrotic activity of plasmid DNA expressing small interference RNA for TGF-beta type II receptor for a mouse model of obstructive nephropathy by cationized gelatin prepared from different amine compounds. Journal of Controlled Release: Official Journal of the Controlled Release Society. 110 (3), 610-617 (2006).
  22. Xia, Z., et al. Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47. American Journal of Nephrology. 28 (1), 34-46 (2008).
  23. Tanaka, T., et al. In vivo gene transfer of hepatocyte growth factor to skeletal muscle prevents changes in rat kidneys after 5/6 nephrectomy. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2 (9), 828-836 (2002).
  24. Hamar, P., et al. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America. 101 (41), 14883-14888 (2004).
  25. Ma, D., et al. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. Journal of the American Society of Nephrology: JASN. 20 (4), 713-720 (2009).
  26. Wei, S., et al. Short hairpin RNA knockdown of connective tissue growth factor by ultrasound-targeted microbubble destruction improves renal fibrosis. Ultrasound in Medicine and Biology. 42 (12), 2926-2937 (2016).
check_url/kr/63302?article_type=t

Play Video

Cite This Article
Yanai, K., Kaneko, S., Ishii, H., Aomatsu, A., Morishita, Y. Delivery of Exogenous Artificially Synthesized miRNA Mimic to the Kidney Using Polyethylenimine Nanoparticles in Several Kidney Disease Mouse Models. J. Vis. Exp. (183), e63302, doi:10.3791/63302 (2022).

View Video