Summary

定量微管分离技术分离小鼠组织中稳定的微管、不稳定的微管和游离微管蛋白

Published: November 17, 2023
doi:

Summary

微管是微管蛋白聚合物,在真核细胞中作为细胞骨架成分起着至关重要的作用,并以其动态不稳定性而闻名。本研究开发了一种将微管分离为稳定微管、不稳定微管和游离微管蛋白的方法,以评估微管在各种小鼠组织中的稳定性。

Abstract

微管由α/β-微管蛋白二聚体组成,是真核细胞细胞骨架的重要组成部分。这些管状聚合物表现出动态不稳定性,因为微管蛋白异二聚体亚基会经历重复聚合和解聚。通过微管蛋白翻译后修饰和微管相关蛋白实现微管稳定性和动力学的精确控制,对于各种细胞功能至关重要。微管功能障碍与发病机制密切相关,包括神经退行性疾病。正在进行的研究集中在调节稳定性的微管靶向治疗剂上,为这些疾病和癌症提供了潜在的治疗选择。因此,了解微管的动态状态对于评估疾病进展和治疗效果至关重要。

传统上,微管动力学是通过粗分离或免疫测定在 体外 或培养细胞中评估的,使用靶向微管蛋白翻译后修饰的抗体。然而,使用此类程序准确分析组织中的微管蛋白状态存在挑战。在这项研究中,我们开发了一种简单而创新的微管分离方法,用于分离小鼠组织中的稳定微管、不稳定微管和游离微管蛋白。

该过程涉及以19:1的体积比在微管稳定缓冲液中匀浆解剖的小鼠组织。然后,在初始慢速离心(2,400 × g)之后,通过两步超速离心过程对匀浆进行分馏以除去碎屑。第一个超速离心步骤(100,000 × g)沉淀出稳定的微管,而所得上清液则进行第二个超速离心步骤(500,000 × g)以分馏不稳定的微管和可溶性微管蛋白二聚体。该方法测定了微管蛋白在小鼠大脑中构成稳定或不稳定微管的比例。此外,观察到微管稳定性的明显组织变化与组成细胞的增殖能力相关。这些发现突出了这种新方法在分析生理和病理条件下微管稳定性方面的巨大潜力。

Introduction

微管 (MTs) 是细长的管状结构,由α/β-微管蛋白异二聚体亚基组成的原丝组成。它们在细胞分裂、运动、形状维持和细胞内运输等各种细胞过程中发挥着重要作用,使其成为真核细胞骨架1 的组成部分。暴露α-微管蛋白亚基的 MT 负端相对稳定,而暴露β-微管蛋白亚基的正端经历动态解聚和聚合2。这种微管蛋白二聚体在正端加成和解离的连续循环,称为动态不稳定性,导致重复的救援和灾难过程3.MT 表现出具有动态不稳定性局部变化的焦点域,包括稳定域和不稳定域4

精确控制MT的动态不稳定性对于许多细胞功能至关重要,特别是在以复杂形态为特征的神经元中。MT 的适应性和耐久性在神经细胞的发育和正常功能中起着至关重要的作用 5,6,7已发现 MT 的动态不稳定性与微管蛋白的各种翻译后修饰 (PTM) 有关,例如乙酰化、磷酸化、棕榈酰化、去酪氨酸化、δ 2、聚谷氨酰胺氧化和聚甘氨酰化。此外,微管相关蛋白 (MAP) 的结合是一种调节机制8。PTM(不包括乙酰化)主要发生在位于 MT 外表面的微管蛋白羧基末端区域。这些修饰在 MT 上创造了不同的表面条件,影响了它们与 MAP 的相互作用,并最终控制了 MT 的稳定性9。α-微管蛋白中羧基末端酪氨酸残基的存在表明存在动态 MT,其迅速被游离微管蛋白池取代。相反,羧基末端的去酪氨酸化和 Lys40 的乙酰化表明稳定的 MT 具有降低的动态不稳定性 9,10

微管蛋白的PTM已被广泛用于评估MTs动力学和稳定性的实验5,7,11,12,13,14,15。例如,在细胞培养研究中,微管蛋白可以分为两个池:游离微管蛋白池和MT池。这是通过在固定剩余的 MT15、16171819 之前通过细胞通透性释放游离微管蛋白来实现的。生化方法涉及使用化学 MT 稳定剂来保护 MT 免受灾难,从而通过离心分离 MT 和游离微管蛋白20,21,22。然而,这些程序无法区分稳定和不太稳定(不稳定)的 MT,因此无法量化 MT 或大脑等组织中的可溶性微管蛋白。因此,在生理和病理条件下评估生物体的MT稳定性已被证明具有挑战性。为了解决这一实验局限性,我们开发了一种新技术,用于精确分离小鼠组织中的 MT 和游离微管蛋白23

这种独特的 MT 分离方法涉及在维持组织中微管蛋白状态的条件下进行组织匀浆,以及两步离心以分离稳定的 MT、不稳定的 MT 和游离微管蛋白。这种简单的程序可以应用于广泛的研究,包括生物体中 MT 和 MAP 的基础研究、与 MT 稳定性相关的健康和疾病的生理和病理分析,以及开发靶向 MT 的药物和其他疗法。

Protocol

1.MT分馏法 注:本研究中进行的所有实验均已获得同志社大学动物伦理委员会的批准。这里使用3-4个月大的C57BL / 6J小鼠。在该方案中,解剖的组织,例如脑,肝脏或胸腺,立即在冰冷的微管稳定缓冲液(MSB)中匀浆,其含有紫杉醇(MT稳定剂)的浓度,其浓度不仅阻止了解聚,而且阻止了MT的再聚合。通过两步超速离心过程将匀浆分离成三部分(<strong class="xfig" style…

Representative Results

通过MT分馏法定量小鼠脑中P2,P3和S3组分中的微管蛋白通过MT分馏方法将小鼠组织中的微管蛋白分离为P2,P3和S3级分,并通过蛋白质印迹进行定量(图1A)。在小鼠脑中以100,000 × g 超速离心20 min,残留在P2组分中的MTs沉淀物占总微管蛋白的34.86%±1.68%。将上清液(S2)进一步以500,000 × g 离心60分钟。获得沉淀物(P3级分)和上清液(S3级分),分别占…

Discussion

在研究微管蛋白在活生物体组织中的状态时,最重要的任务是防止制备过程中意外的MT聚合或解聚。从组织去除到匀浆和离心过程中,MTS在样品中的稳定性受MSB中紫杉醇浓度、组织与缓冲液的比例、温度等因素的影响。因此,在用20倍体积的匀浆分析小鼠组织的方案的每个步骤中优化条件。较高浓度的紫杉醇可以在 体外诱导MT聚合,即使在冷却条件下也是如此25。当分析微?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作在一定程度上得到了JST的支持,建立了大学奖学金,以创造科学技术创新(A.HT。JPMJFS2145)、JST SPRING(A.HT.;JPMJSP2129)、JSPS 研究员补助金 (A.HT.; 23KJ2078)、科学研究补助金 (B) JSPS KAKENHI (22H02946 for TM)、文部科学省 (TM; 26117004) 的名为“脑蛋白衰老和痴呆症控制”的创新领域科学研究补助金,以及上原纪念基金会 (TM; 202020027) 的上原研究奖学金。作者声明没有相互竞争的经济利益。

Materials

1.5 ML TUBE CASE OF 500 Beckman Coulter 357448
1A2 Sigma-Aldrich T9028 1:5,000 dilution
2-(N-morpholino)ethanesulfonic acid (MES) Nacalai Tesque 02442-44
300 kDa ultrafiltration spin column Aproscience PT-1013
6-11B1 Sigma-Aldrich T7451 1:5,000 dilution
AKTA prime plus Cytiva
anti-mouse IgG Jackson ImmunoResearch 115-035-146 1:5,000 dilution
antipain Peptide Institute Inc. 4062
aprotinin Nacalai Tesque 03346-84
Chemi-Lumi One L Nacalai Tesque 07880-54
Corning bottle-top vacuum filter system Corning 430758 0.22µm 33.2cm² Nitrocellulose membrane
DIFP Sigma-Aldrich 55-91-4 
DIGITAL HOMOGENIZER AS ONE HOM
DM1A Sigma-Aldrich T9026 1:5,000 dilution
DTT Nacalai Tesque 14128-46
EGTA Nacalai Tesque 37346-05
FluoroTrans W 3.3 Meter Roll Pall Corporation BSP0161
glycerol Nacalai Tesque 17018-25
GTP Nacalai Tesque 17450-61
HIGH SPEED REFRIGERATIOED MICRO CENTRIFUGE Kitman TOMY
HiLoad 16/600 Superdex 200 pg column Cytiva 28-9893-35
Image Gauge Software  FUJIFILUM Wako Pure Chemical Corporation
ImmunoStar LD  FUJIFILUM Wako Pure Chemical Corporation 292-69903
KMX-1 Millipore MAB3408 1:5,000 dilution
LAS-4000 luminescent image analyzer FUJIFILUM Wako Pure Chemical Corporation
leupeptin Peptide Institute Inc. 43449-62
MgSO4 Nacalai Tesque 21003-75
Na3VO4 Nacalai Tesque 32013-92
NaF Nacalai Tesque 31420-82
okadaic acid LC Laboratories O-2220 
OPTIMA MAX-XP Beckman Coulter 393315
pepstatin Nacalai Tesque 26436-52
PMSF Nacalai Tesque 27327-81
Polycarbonate Centrifuge Tubes for TLA120.2 Beckman Coulter 343778
Protease inhibitor cocktail (cOmplete, EDTA-free) Roche 5056489001
Purified tubulin  Cytoskeleton T240
QSONICA Q55 QSonica Q55
Taxol LC Laboratories P-9600
TLA-120.2 rotor Beckman Coulter 357656
TLA-55 rotor Beckman Coulter 366725
TLCK Nacalai Tesque 34219-94
Triton X-100 Nacalai Tesque 12967-45
β-glycerophosphate Sigma-Aldrich G9422

References

  1. Janke, C., Magiera, M. M. The tubulin code and its role in controlling microtubule properties and functions. Nature Reviews Molecular Cell Biology. 21 (6), 307-326 (2020).
  2. Conde, C., Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience. 10 (5), 319-332 (2009).
  3. Mitchison, T., Kirschner, M. Dynamic instability of microtubule growth. Nature. 312 (5991), 237-242 (1984).
  4. Baas, P. W., Rao, A. N., Matamoros, A. J., Leo, L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken). 73 (9), 442-460 (2016).
  5. Challacombe, J. F., Snow, D. M., Letourneau, P. C. Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue. Journal of Neuroscience. 17 (9), 3085-3095 (1997).
  6. Kapitein, L. C., Hoogenraad, C. C. Building the neuronal microtubule cytoskeleton. Neuron. 87 (3), 492-506 (2015).
  7. Leo, L., et al. Vertebrate fidgetin restrains axonal growth by severing labile domains of microtubules. Cell Reports. 12 (11), 1723-1730 (2015).
  8. Janke, C. The tubulin code: molecular components, readout mechanisms, and functions. Journal of Cell Biology. 206 (4), 461-472 (2014).
  9. Wloga, D., Joachimiak, E., Fabczak, H. Tubulin post-translational modifications and microtubule dynamics. International Journal of Molecular Sciences. 18 (10), 2207 (2017).
  10. Baas, P. W., Black, M. M. Individual microtubules in the axon consist of domains that differ in both composition and stability. Journal of Cell Biology. 111 (2), 495-509 (1990).
  11. Cartelli, D., et al. Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer epothilone D is neuroprotective. Scientific Reports. 3, 1837 (2013).
  12. Zhang, B., et al. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proceedings of the National Academy of Sciences of the United States of America. 102 (1), 227-231 (2005).
  13. Zhang, F., et al. Post-translational modifications of alpha-tubulin in Alzheimer disease. Translational Neurodegeneration. 4, 9 (2015).
  14. Miyasaka, T., et al. Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiology of Aging. 39, 69-81 (2016).
  15. Fujiwara, H., et al. Inhibition of microtubule assembly competent tubulin synthesis leads to accumulation of phosphorylated tau in neuronal cell bodies. Biochemical and Biophysical Research Communications. 521 (3), 779-785 (2020).
  16. Vielkind, U., Swierenga, S. H. A simple fixation procedure for immunofluorescent detection of different cytoskeletal components within the same cell. Histochemistry. 91 (1), 81-88 (1989).
  17. Kanai, Y., et al. Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. Journal of Cell Biology. 109 (3), 1173-1184 (1989).
  18. Brown, A., Li, Y., Slaughter, T., Black, M. M. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. Journal of Cell Science. 104 (2), 339-352 (1993).
  19. Black, M. M., Slaughter, T., Moshiach, S., Obrocka, M., Fischer, I. Tau is enriched on dynamic microtubules in the distal region of growing axons. Journal of Neuroscience. 16 (11), 3601-3619 (1996).
  20. Caron, J. M., Jones, A. L., Kirschner, M. W. Autoregulation of tubulin synthesis in hepatocytes and fibroblasts. Journal of Cell Biology. 101 (5), 1763-1772 (1985).
  21. Merrick, S. E., Trojanowski, J. Q., Lee, V. M. Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons. Journal of Neuroscience. 17 (15), 5726-5737 (1997).
  22. Miyasaka, T., Sato, S., Tatebayashi, Y., Takashima, A. Microtubule destruction induces tau liberation and its subsequent phosphorylation. FEBS Letters. 584 (14), 3227-3232 (2010).
  23. Hagita, A., et al. Quantitative fractionation of tissue microtubules with distinct biochemical properties reflecting their stability and lability. Biochemical and Biophysical Research Communications. 560, 186-191 (2021).
  24. Montecinos-Franjola, F., Chaturvedi, S. K., Schuck, P., Sackett, D. L. All tubulins are not alike: Heterodimer dissociation differs among different biological sources. Journal of Biological Chemistry. 294 (26), 10315-10324 (2019).
  25. Vallee, R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). Journal of Cell Biology. 92 (2), 435-442 (1982).
  26. Bartolo, M. E., Carter, J. V. Effect of microtubule stabilization on the freezing tolerance of mesophyll cells of spinach. Plant Physiology. 97 (1), 182-187 (1991).
  27. Strang, K. H., Golde, T. E., Giasson, B. I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Laboratory Investigation. 99 (7), 912-928 (2019).
  28. Fourel, G., Boscheron, C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Letters. 594 (21), 3409-3438 (2020).
  29. Terry, R. D., Gonatas, N. K., Weiss, M. Ultrastructural studies in Alzheimer’s presenile dementia. The American Journal of Pathology. 44 (2), 269-297 (1964).
  30. Yoshida, H., Ihara, Y. Tau in paired helical filaments is functionally distinct from fetal tau: assembly incompetence of paired helical filament-tau. Journal of Neurochemistry. 61 (3), 1183-1186 (1993).
  31. Cash, A. D., et al. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. The American Journal of Pathology. 162 (5), 1623-1627 (2003).
  32. Hempen, B., Brion, J. P. Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer’s disease. Journal of Neuropathology and Experimental Neurology. 55 (9), 964-972 (1996).
  33. Miyasaka, T., et al. Imbalanced expression of tau and tubulin induces neuronal dysfunction in C. elegans models of tauopathy. Frontiers in Neuroscience. 12, 415 (2018).
  34. Boiarska, Z., Passarella, D. Microtubule-targeting agents and neurodegeneration. Drug Discovery Today. 26 (2), 604-615 (2021).

Play Video

Cite This Article
Hagita-Tatsumoto, A., Miyasaka, T. Quantitative Microtubule Fractionation Technique to Separate Stable Microtubules, Labile Microtubules, and Free Tubulin in Mouse Tissues. J. Vis. Exp. (201), e63358, doi:10.3791/63358 (2023).

View Video