Summary

Хориоаллантоическая мембрана перепела - инструмент для фотодинамической диагностики и терапии

Published: April 28, 2022
doi:

Summary

Хориоаллантоическая мембрана (CAM) птичьего эмбриона является очень полезным и применимым инструментом для различных областей исследований. Специальная ex ovo модель японского перепела CAM подходит для фотодинамического исследования лечения.

Abstract

Хориоаллантоическая мембрана (CAM) птичьего эмбриона представляет собой тонкую, экстраэмбриональную мембрану, которая функционирует как первичный орган дыхания. Его свойства делают его отличной экспериментальной моделью in vivo для изучения ангиогенеза, роста опухоли, систем доставки лекарств или фотодинамической диагностики (PDD) и фотодинамической терапии (PDT). В то же время эта модель отвечает требованию о замене экспериментальных животных подходящей альтернативой. Ex ovo культивируемый эмбрион обеспечивает легкое нанесение вещества, доступ, мониторинг и документирование. Наиболее часто используемым является цыпленок CAM; Однако в данной статье описываются преимущества японской перепелиной CAM как недорогой и высокопроизводительной модели. Еще одним преимуществом является более короткое эмбриональное развитие, что позволяет увеличить экспериментальную текучесть кадров. Здесь исследуется пригодность перепелиного CAM для PDD и PDT рака и микробных инфекций. В качестве примера описано применение фотосенсибилизатора гиперицина в комбинации с липопротеинами или наночастицами в качестве системы доставки. Определена оценка повреждений от изображений в белом свете и изменения интенсивности флуоресценции ткани CAM при фиолетовом свете (405 нм) совместно с анализом гистологических срезов. Перепелиный CAM четко показал влияние ФДТ на сосудистую систему и ткани. Кроме того, могут наблюдаться такие изменения, как капиллярное кровоизлияние, тромбоз, лизис мелких сосудов и кровотечение из более крупных сосудов. Японский перепел CAM является перспективной моделью in vivo для фотодинамической диагностики и исследований терапии, с применением в исследованиях опухолевого ангиогенеза, а также антиваскулярной и антимикробной терапии.

Introduction

Модель куриной хориоаллантоической мембраны (CAM) хорошо известна и широко используется в различных областях исследований. Это богато васкуляризованный экстраэмбриональный орган, обеспечивающий газообмен и транспорт минералов1. Благодаря прозрачности и доступности этой мембраны отдельные кровеносные сосуды и их структурные изменения можно наблюдать в режиме реального времени2. Несмотря на преимущества, цыпленок CAM также имеет некоторые ограничения (например, более крупные селекционные мощности, производство яиц и потребление кормов), которых можно избежать, используя другие виды птиц. В этом протоколе описана альтернативная модель ex ovo CAM с использованием эмбриона японского перепела (Coturnix japonica). Благодаря своим небольшим размерам, он позволяет использовать гораздо большее количество экспериментальных особей, чем куриный CAM. Более того, более короткое 16-дневное эмбриональное развитие перепелиных эмбрионов является еще одним преимуществом. Первые более крупные сосуды на перепелином CAM появляются в эмбриональный день (ЭД) 7. Это можно напрямую сравнить с развитием эмбриона цыпленка (стадии 4-35); однако более поздние стадии развития уже не сопоставимы и требуют меньше времени для эмбриона перепела3. Интерес представляет регулярное возникновение микрососудистых разветвлений, аналогичных таковым у куриных CAMs 4,5,6. Быстрое половое созревание, высокая яйценоскость и недорогая селекция являются другими примерами, которые благоприятствуют использованию этой экспериментальной модели7.

Птичья модель CAM часто используется в исследованиях фотодинамической терапии (ФДТ)8. ФДТ используется для лечения нескольких форм рака (небольшие локализованные опухоли) и других неонкологических заболеваний. Его принцип заключается в доставке флуоресцентного препарата, фотосенсибилизатора (ПС), к поврежденной ткани и его активации светом соответствующей длины волны. Одним из проспективных ПС, используемых в исследованиях, является гиперицин, первоначально выделенный из лекарственного растения зверобой (Hypericum perforatum)9. Сильные фотосенсибилизирующие эффекты этого соединения основаны на его фотохимических и фотофизических свойствах. Они характеризуются множественными пиками возбуждения флуоресценции в диапазоне 400-600 нм, которые индуцируют излучение флуоресценции примерно на 600 нм. Максимумы поглощения гиперицина в спектральном диапазоне находятся в диапазоне 540-590 нм, а максимумы флуоресценции находятся в диапазоне 590-640 нм9. Для достижения этих фотосенсибилизирующих эффектов гиперицин возбуждается лазерным светом на длине волны 405 нм после местного введения10. При наличии света гиперицин может проявлять вирулицидный, антипролиферативный и цитотоксический эффекты11, при этом отсутствует системная токсичность, и он быстро высвобождается из организма. Гиперицин является липофильным веществом, которое образует нерастворимые в воде, нефлуоресцентные агрегаты, поэтому несколько типов нанонесущих, таких как полимерные наночастицы12,13 или липопротеины высокой и низкой плотности (ЛПВП, ЛПНП)14,15, используются для его доставки и проникновения в клетки. Поскольку CAM является естественно иммунодефицитной системой, опухолевые клетки могут быть имплантированы непосредственно на поверхность мембраны. Модель также хорошо подходит для регистрации степени повреждения сосудов, вызванного ФДТ, в соответствии с определенной оценкой16,17. Свет более низкой интенсивности по сравнению с ФДТ может быть использован для фотодинамической диагностики (ФДД). Мониторинг тканей под фиолетовым возбуждением светодиодный свет также приводит к фотоактивации фотосенсибилизаторов 18,19,20, что приводит к излучению флуоресцентного света, но это не обеспечивает достаточно энергии для запуска реакции ФДТ и повреждения клеток. Это делает его хорошим инструментом для визуализации и диагностики опухолей или мониторинга фармакокинетики используемых PSs14,15.

В данной статье описана подготовка анализа перепела ex ovo CAM с выживаемостью более 80%. Эта культура ex ovo успешно применялась в большом количестве экспериментов.

Protocol

Исследование проводилось в соответствии с институциональными руководящими принципами. Все оборудование и реагенты должны быть автоклавированы или стерилизованы 70% этанолом или ультрафиолетовым светом. 1. Инкубация яиц Храните оплодотворенные перепелин?…

Representative Results

Локализация опухоли на поверхности CAM затруднена при белом свете. Фотосенсибилизатор (здесь, гиперицин), используемый при PDD, как ожидается, будет избирательно поглощаться опухолью и помогает визуализировать опухоль. Добавление гиперицина и использование флуоресцентного света (наприм…

Discussion

Для успешного выращивания ex ovo важно следовать протоколу выше. Более того, если яйца не открыты достаточно тщательно или во время выращивания недостаточно влажности, желточный мешок прилипает к скорлупе и часто разрывается. Начало культивирования ex ovo во время около 60 ч инкуба…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Работа была поддержана VEGA 2/0042/21 и APVV 20-0129. Вклад В. Хантошовой является результатом реализации проекта: Открытое научное сообщество для современных междисциплинарных исследований в области медицины (Аббревиатура: OPENMED), ITMS2014+: 313011V455 при поддержке Интегрированной инфраструктуры Операционной программы, финансируемой ERDF.

Materials

6-Well Cell Culture Plate Sarstedt 83.392 Transparent polystyrene, sterile
CO2 Incubator ESCO CCL-0508 ESCO, Singapore CCL-050B-8 CO2 cell culture incubator
cryocut Leica CM 1800 Reichert-Jung, USA
digital camera Canon EOS 6D II Canon, Japan
diode laser 405 nm Ocean Optics, USA
DMSO Sigma-Aldrich 67-68-5 dimethyl sulfoxid
eosin Sigma-Aldrich 15086-94-9
ethanol Sigma-Aldrich 64-17-5
fine brush size 2 Faber-Castell 281802 brush for CAM separation and manipulation
glutaraldehyde Sigma-Aldrich 111-30-8
hematoxylin Sigma-Aldrich 517-28-2
hypericin Sigma-Aldrich 84082-80-4
incubator Bios Midi Bios SedlEquation 1any, Czech Republic Forced draught incubator for initial incubation
incubator Memmert IF160 Memmert, Germany Forced air circulation incubator for CAM incubation
Kaiser slimlite plano, LED light box Kaiser, Germany 2453 Transilluminator
LED light 405 nm custom made circular LED light
macro lens Canon MP- E 65 mm f/2.8 Canon, Japan
microscope Kapa 2000 Kvant, Slovakia optical microscope
microtome Auxilab 508 Auxilab, Spain manual rotary microtome
paraformaldehyde Sigma-Aldrich 30525-89-4
Paraplast Plus Sigma-Aldrich P3683 parafin medium for tissue embedding
PBS Sigma-Aldrich P4417 Phosphate saline buffer
scissors Castroviejo Orimed  OR66-108 micro scissors for CAM separation
software ImageJ 1.53 public domain image processing and analysis program
stock solution HDL Sigma-Aldrich 437641-10MG high density lipoproteins
stock solution LDL Sigma-Aldrich 437644-10MG low density lipoproteins
Tissue-Tek O.C.T. Compound Sakura Finetek 4583 Optimal Cutting Temperature Compound 118 mL squeeze bottles

References

  1. Nowak-Sliwinska, P., van Beijnum, J. R., van Berkel, M., vanden Bergh, H., Griffioen, A. W. Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane. Angiogenesis. 13 (4), 281-292 (2010).
  2. van Leengoed, H. L. L. M., vander Veen, N., Versteeg, A. A. C., Ouellet, R., van Lier, J. E., Star, W. M. In-vivo photodynamic effects of phthalocyanines in a skin-fold observation chamber model: role of central metal ion and degree of sulfonation. Photochemistry Photobiology. 58 (4), 575-580 (1993).
  3. Ainsworth, S. J., Stanley, R. L., Evans, D. J. R. Developmental stages of the Japanese quail. Journal of Anatomy. 216 (1), 3 (2010).
  4. De Fouw, D. O., Rizzo, V. J., Steinfeld, R., Feinberg, R. N. Mapping of the microcirculation in the chick chorioallantoic membrane during normal angiogenesis. Microvascular Research. 38 (2), 136-147 (1989).
  5. Sandau, K., Kurz, H. Modelling of vascular growth processes: a stochastic biophysical approach to embryonic angiogenesis. Journal of Microscopy. 175 (3), 205-213 (1994).
  6. Kurz, H., Ambrosy, S., Wilting, J., Marmé, D., Christ, B. Proliferation pattern of capillary endothelial cells in chorioallantoic membrane development indicates local growth control, which is counteracted by vascular endothelial growth factor application. Developmental Dynamics. 203 (2), 174-186 (1995).
  7. Huss, D., Poynter, G., Lansford, R. Japanese quail (Coturnix japonica) as laboratory animal model. Lab Animal. 37 (11), 513-519 (2008).
  8. Gottfried, V., Lindenbaum, E. S., Kimel, S. The chick chorioallantoic membrane (CAM) as an in-vivo model for photodynamic therapy. Journal of Photochemistry and Photobiology, B: Biology. 12 (2), 204-207 (1992).
  9. Miškovský, P. Hypericin – a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological molecules. Current Drug Targets. 3 (1), 55-84 (2002).
  10. Čavarga, I., et al. Photodynamic effect of hypericin after topical application in the ex ovo quail chorioallantoic membrane model. Planta Medica. 80 (1), 56-62 (2014).
  11. Martinez-Poveda, B., Quesada, A. R., Medina, M. A. Hypericin in the dark inhibits key steps of angiogenesis in vitro. Europan Journal of Pharmacology. 516 (2), 97-103 (2005).
  12. Datta, S., et al. Unravelling the excellent chemical stability and bioavailability of solvent responsive curcumin-loaded 2-ethyl-2-oxazoline-grad-2-(4-dodecyloxyphenyl)- 2-oxazoline copolymer nanoparticles for drug delivery. Biomacromolecules. 19 (7), 2459-2471 (2018).
  13. Huntošová, V., et al. Alkyl Chain length in poly(2-oxazoline)-based amphiphilic gradient copolymers regulates the delivery of hydrophobic molecules: a case of the biodistribution and the photodynamic activity of the photosensitizer hypericin. Biomacromolecules. 22 (10), 4199-4216 (2021).
  14. Buríková, M., et al. Hypericin fluorescence kinetics in the presence of low density lipoproteins: study on quail CAM assay for topical delivery. General Physiology and Biophysic. 35 (4), 459-468 (2016).
  15. Lenkavska, L., et al. Benefits of hypericin transport and delivery by low- and high-density lipoproteins to cancer cells: From in vitro to ex ovo. Photodiagnosis and Photodynamic Therapy. 25, 214-224 (2019).
  16. Rück, A., Böhmler, A., Steiner, R. PDT with TOOKAD studied in the chorioallantoic membrane of fertilized eggs. Photodiagnosis and Photodynamic Therapy. 2 (1), 79-90 (2005).
  17. Gottfried, V., Davidi, R., Averbuj, C., Kimel, S. In vivo damage to chorioallantoic membrane blood vessels by porphycene-induced photodynamic therapy. Journal of Photochemistry and Photobiology, B: Biology. 30 (2-3), 115-121 (1995).
  18. Buzzá, H. H., Silva, L. V., Moriyama, L. T., Bagnato, V. S., Kurachi, C. Evaluation of vascular effect of Photodynamic Therapy in chorioallantoic membrane using different photosensitizers. Journal of Photochemistry and Photobiology B: Biology. 138, 1-7 (2014).
  19. Dougherty, T. J., et al. Photodynamic therapy. Journal of the National Cancer Institute. 90, 889-905 (1998).
  20. Xiang, L., et al. Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor. Journal of Biomedical Optics. 12 (1), 01400-01408 (2007).
  21. Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. Journal of Visualized Experiments. (51), 2720 (2011).
  22. Abramoff, M. D., Magelhaes, P. J., Ram, S. J. Image Processing with ImageJ. Biophotonics International. 11 (7), 36-42 (2004).
  23. Chomczynski, P., Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry. 162 (1), 156-159 (1987).
  24. Máčajová, M., Čavarga, I., Sýkorová, M., Valachovič, M., Novotná, V., Bilčík, B. Modulation of angiogenesis by topical application of leptin and high and low molecular heparin using the Japanese quail chorioallantoic membrane model. Saudi Journal of Biological Sciences. 27 (6), 1488-1493 (2020).
  25. Mangir, N., Dikici, S., Claeyssens, F., MacNeil, S. Using Ex Ovo chick chorioallantoic membrane (CAM) assay to evaluate the biocompatibility and angiogenic response to biomaterials. ACS Biomaterials Science Engineering. 5 (7), 3190-3200 (2019).
  26. Marshall, K. M., Kanczler, J. M., Oreffo, R. O. C. Evolving applications of the egg: chorioallantoic membrane assay and ex vivo organotypic culture of materials for bone tissue engineering. Journal of Tissue Engineering. 11, 1-25 (2020).
  27. Merlos Rodrigo, M. A., et al. Extending the applicability of in ovo and ex ovo chicken chorioallantoic membrane assays to study cytostatic activity in neuroblastoma cells. Frontiers in Oncology. 11, 1-10 (2021).
  28. Meta, M., Kundeková, B., Bilčík, B., Máčajová, M. The effect of silicone ring application on CAM vasculature in Japanese Quail (Coturnix japonica). Proceedings of the Student Scientific Conference Faculty of Natural Sciences of Comenius University, Bratislava, Slovakia. , 385-390 (2019).
  29. Kohli, N., et al. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised ex ovo chorioallantoic membrane model. Journal of Tissue Engineering. 11, 1-15 (2020).
  30. Kundeková, B., Máčajová, M., Meta, M., Čavarga, I., Bilčík, B. Chorioallantoic membrane models of various avian species differences and applications. Biology-Basel. 10 (4), 301 (2021).
  31. Parsons-Wingerter, P., Elliott, K. E., Clark, J. I., Farr, A. G. Fibroblast growth factor-2 selectively stimulates angiogenesis of small vessels in arterial tree. Arteriosclerosis, Thrombosis and Vascular Biology. 20 (5), 1250-1256 (2000).
  32. Buzzá, H. H., Zangirolami, A. C., Davis, A., Gómez-García, P. B., Kurachi, C. Fluorescence analysis of a tumor model in the chorioallantoic membrane used for the evaluation of different photosensitizers for photodynamic therapy. Photodiagnosis and Photodynamic Therapy. 19, 78-83 (2017).
check_url/kr/63422?article_type=t

Play Video

Cite This Article
Máčajová, M., Huntošová, V., Meta, M., Kundeková, B., Čavarga, I., Bilčík, B. Quail Chorioallantoic Membrane – A Tool for Photodynamic Diagnosis and Therapy. J. Vis. Exp. (182), e63422, doi:10.3791/63422 (2022).

View Video