Summary

基于外泌体的多巴胺载体系统的配方和表征

Published: April 04, 2022
doi:

Summary

在这里,我们旨在通过从沃顿果冻间充质干细胞中分离的干细胞外泌体的多巴胺负载来获得一种制剂。外泌体分离和表征,药物加载到所得外泌体中,以及所开发制剂的细胞毒性活性在本方案中描述。

Abstract

大小在 40 到 200 nm 之间的外泌体构成了细胞外囊泡的最小亚群。这些由细胞分泌的生物活性囊泡在细胞间货物和通讯中起着积极作用。外泌体主要存在于体液中,如血浆、脑脊液、尿液、唾液、羊水、初乳、母乳、关节液、精液和胸膜酸。考虑到外泌体的大小,人们认为它们可能在中枢神经系统疾病中发挥重要作用,因为它们可以穿过血脑屏障 (BBB)。因此,本研究旨在通过将多巴胺封装到从沃顿果冻间充质干细胞(WJ-MSCs)中分离的外泌体中来开发一种基于外泌体的纳米载体系统。通过表征过程的外泌体与多巴胺一起孵育。负载多巴胺的外泌体在孵育结束时重新表征。在药物释放和细胞毒性测定中研究了多巴胺负载的外泌体。结果表明,多巴胺可以成功地包封在外泌体内,并且负载多巴胺的外泌体不影响成纤维细胞的活力。

Introduction

外泌体是具有显着特征的生物活性囊泡,大小范围为 40 nm 至 200 nm。外泌体起源于细胞膜,是由于内体1 的释放而形成的。这些结构充当细胞间的通讯器,并与相邻细胞相互作用,以促进活性分子的转移。外泌体可以从许多不同的来源分离出来。这些包括体液,如血浆、尿液、脑脊液、唾液,以及在 体外 条件下培养的细胞系。外泌体在消除神经损伤方面发挥着重要作用,这要归功于它们所含的生物大分子,如脂质、蛋白质和核酸2。胶质是神经系统3 的支持细胞, 通过 外泌体4 将蛋白质和微 RNA 转移到神经元的轴突。

形成髓鞘的脂质是神经传导的特征,也通过外泌体从少突胶质细胞中释放出来 4,5。外泌体还参与突触可塑性、神经元应激反应、细胞间通讯和大脑神经发生等过程 6,7。外泌体具有纳米尺寸的事实使它们能够通过BBB。穿透该膜后,从间质液到脑脊液有一条特殊的过渡途径8。由于其表面特性,外泌体可以作为药物递送系统与靶细胞有效相互作用,并主动递送负载的药物。

由于各种粘附蛋白(四跨膜蛋白和整合素)在外泌体表面的表达,这些细胞外囊泡可以很容易地与宿主细胞膜相互作用和融合9。人们认为外泌体可以用作药物递送系统,特别是在治疗中枢神经系统疾病时,因为它们能够穿透BBB及其表面特性。与同种异体细胞疗法相比,间充质干细胞 (MSC) 衍生的外泌体具有较低的免疫排斥风险,在这方面,它们可以成为无细胞治疗应用的重要组成部分10.

多巴胺是一种分子,其大脑中的缺乏是帕金森病(PD)的特征,每天都在恶化11,12,13。众所周知,PD与中脑黑质中多巴胺能神经元的变性和运动神经元功能的丧失有关14,15。多巴胺能神经元的死亡阻止了神经递质多巴胺向脑纹状体的供应。这反过来又导致PD特异性症状的出现16。帕金森病的这些症状是运动迟缓、姿势不稳、僵硬,尤其是静止性震颤12,13。尽管帕金森病在两个多世纪前首次被描述,但了解该疾病的病理学和病因学的研究仍在进行中,目前人们认为帕金森病是一种复杂的全身性疾病17。据预测,当超过80%的神经元退化时,会发生多巴胺缺乏症,并观察到临床PD症状18。在疾病的治疗中,优选不完全的多巴胺补充以减轻运动症状。体内研究表明,将多巴胺直接注入大脑可显着减轻动物的症状19.多巴胺前体如L-DOPA(L-3,4-二羟基苯丙氨酸)和多巴胺受体药物在临床上使用,因为人类不可能将多巴胺直接输注到大脑中,并且进入系统的多巴胺不能穿过BBB20。这些类型的药物会随着时间的推移而失去效力。然而,目前尚无针对帕金森病的根治性治疗方法,因此,开发新的治疗策略和治疗方式以揭示疾病的病理生理学并减少帕金森病对患者的影响是非常必要的。

最近,基于外泌体的研究因收集有关神经系统疾病的治疗方法和病理学的信息而引起了人们的关注。MSC 衍生的外泌体已被证明可以减少神经损伤中的炎症并有助于神经元再生21,22,23。此外,据报道,MSC 衍生的外泌体分泌组通过显示神经营养和神经保护作用来减少细胞凋亡,尤其是对多巴胺能神经元24,25。近年来,对将外泌体用作治疗性药物递送系统的平台的研究急剧加快。在许多研究中,已经观察到相关药物可以很容易地封装到外泌体中并安全地递送至靶细胞、组织和器官中 26,27。孵育、冻融循环、超声处理和挤压等不同方法可用于将药物加载到外泌体中28

与外泌体或外泌体样囊泡共孵育可使亲脂性小分子被动封装到这些递送系统中28,29,30。特别是姜黄素31、过氧化氢酶30、多柔比星32和紫杉醇33等多种分子被有效地装载到外泌体中。据观察,具有抗氧化活性的含过氧化氢酶的外泌体在大脑的神经元和小胶质细胞中有效积累,并表现出很强的神经保护活性30。在同一项研究中,发现添加到复合物中以增加负载效率的皂苷在孵育期间增加了载药百分比30,34。然而,需要进一步的研究来建立外泌体的药物负荷标准。

本文描述了通过将多巴胺封装到从 WJ-MSC 中分离的外泌体中来开发纳米载体系统。详细解释了所有步骤,包括WJ-MSCs的培养、外泌体的分离和表征、载药实验、用各种技术表征多巴胺负载的外泌体以及 体外 细胞毒性分析。

Protocol

注意:有关本协议中使用的所有材料和设备的详细信息,请参阅 材料表 。 1. 沃顿果冻间充质干细胞的培养和冷冻保存 从-80°C冰箱中取出WJ-MSC(来自ATCC)。将细胞接种到含有补充有 10% 胎牛血清 (FBS) 的 DMEM-F12 培养基的烧瓶中。将它们在37°C下在含有5%CO2的培养箱中孵育。 每 2 天更换一次培养基。当细胞达到 80% 汇合度时传?…

Representative Results

外泌体分离和表征当培养物达到足够的密度时,将沃顿果冻干细胞培养并在无血清培养基中孵育48小时。孵育结束后,将上清液储存在-20°C。 将收集的上清液用PBS稀释并进行超速离心(图1)。通过NTA和DLS分析分析得到的溶液。外泌体通过0.22μm过滤器进行灭菌。获得的外泌体的平均大小被确定为 98 nm(视频 1)。离心结束时获得约100?…

Discussion

外泌体是大多数细胞类型分泌的尺寸为 40-200 nm 的小膜囊泡,例如 MSCs1。外泌体能够实现细胞之间的通讯,可以以不同的方式进入细胞,例如内吞作用、吞噬作用、微胞饮作用、脂质介导的内化和融合33,44。与其他纳米载体系统相比,在外泌体表面发现的脂质和胆固醇赋予了携带亲水性和疏水性分子的能力,胆固醇末端的氢键允许紧密?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作主要由耶尔德兹技术大学科学研究项目 (TSA-2021-4713) 提供的研究资金支持。

Materials

0.22 µm membrane filter Aisimo Used for the sterilization process
0.45 µm syringe filter Aisimo Used for the sterilization process
15 mL Falcon tube Nest Used in cell culture step
25 cm2 cell culture flasks (Falcon, TPP tissue culture flasks Nest Used in cell culture step
50 mL Falcon tube Nest Used in cell culture step
75 cm2 cell culture flasks (Falcon, TPP tissue culture flasks Nest Used in cell culture step
96 well plates (Falcon, TPP microplates) Merck Millipore Used in cell culture step
Acetonitrile Sigma 271004-1L Used for HPLC analysis
Autoclave NUVE-OT 90L Used for the sterilization process
Cell Culture Cabin Hera Safe KS Used for the cell culture process
Centrifugal Hitachi CF16RN Used in the exosome isolation step
CO2 incubator with Safe Cell UV Panasonic Used for the cell culture process
Dopamine hydrochloride H8502-10G Sigma H8502-10G Used in exosome dopamine loading
Dulbecco's Modified Eagle's Medium/Nutrient Mixture-F12 Sigma RNBJ7249 Used as cell culture medium
Fetal Bovine Serum-FBS Capricorn FBS-16A It was used by adding to the cell culture medium.
Freezer -80 °C Panasonic MDF-U5386S-PE To store cells and the resulting exosomes
Fridge Panasonic MPR-215-PE Used to store cell culture and other materials
High performance liquid chromatography-HPLC Agilent Technologies The presence of dopamine from the content of the obtained formulation was investigated.
Microscope- Primovert Zeiss Used to observe cells in cell culture.
MTT Assay Biomatik Used to measure cell viability
NanoSight NS300 Malvern panalytical Malvern panalytical Used for exosome characterization
Optima XPN-100 Ultracentrifuge Beckman Coulter Used in the exosome isolation step
PBS tablet Biomatik 43602 In the preparation of the PBS solution
Penicilin/Streptomycin Solution Capricorn PB-S It was added to the medium to prevent contamination in cell culture.
Pipette Aid Isolab
Precision balance-Kern Kern-ABJ220-4NM Used in the preparation of solutions
Q500 Sonicator Qsonica, LLC Used to digest exosomes in HPLC analysis
Saponin Sigma 47036-50G-F It was used by adding it to the total solution in the exosome dopamine loading process.
Spectrostar-Nano-Spectrophotometry BMG LABTECH Used for MTT and drug release analyzes
SPSS 22 statistical package program
Vorteks-FinePCR FinePCR-FineVortex Used to mix solutions homogeneously
Water Bath 37 °C-Senova Senova Used in cell culture step
Wharton’s jelly mesenchymal stem cells ATCC
ZetaSizer Malvern Nano ZS Malvern Nano ZS Used for exosome characterization

References

  1. Ingato, D., Lee, J. U., Sim, S. L., Kwon, Y. L. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. Journal of Controlled Release. 241, 174-185 (2016).
  2. Riazifar, M., et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano. 13 (6), 6670-6688 (2019).
  3. Ursavaş, S., Darıci, H., Karaoz, E. Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. Journal of Neuroscience Research. 99 (6), 1579-1597 (2021).
  4. Skog, J., et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology. 10 (12), 1470-1476 (2008).
  5. Fruhbeis, C., Frohlich, D., Kramer-Albers, E. M. Emerging roles of exosomes in neuron-glia communication. Frontiers in Physiology. 3 (119), 1-7 (2012).
  6. Qing, L., Chen, H., Tang, J., Jia, X. Exosomes and their microRNA cargo: new players in peripheral nerve regeneration. Neurorehabil Neural Repair. 32 (9), 765-776 (2018).
  7. Saeedi, S., Israel, S., Nag, C., Turecki, G. The emerging role of exosomes in mental disorders. Translational Psychiatry. 9 (1), 122 (2019).
  8. Jan, A. T., et al. Perspective insights of exosomes in neurodegenerative diseases: A critical appraisal. Frontiers in Aging Neuroscience. 9, 317 (2017).
  9. Montecalvo, A., et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 119 (3), 756-766 (2012).
  10. Yu, B., Zhang, X., Li, X. Exosomes derived from mesenchymal stem cells. International Journal of Molecular Sciences. 15 (3), 4142-4157 (2014).
  11. Pahuja, R., et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in Parkinsonian rats. ACS Nano. 9 (5), 4850-4871 (2015).
  12. Rao, S. S., Hofmann, L. A., Shakil, A. Parkinson’s disease: Diagnosis and treatment. American Family Physician. 15 (74), 2046-2054 (2006).
  13. Teves, J. M. Y., et al. Parkinson’s disease skin fibroblasts display signature alterations in growth, redox homeostasis, mitochondrial function, and autophagy. Frontiers Neuroscience. 11, 737 (2017).
  14. Kalia, L. V., Lang, A. E. Parkinson disease in 2015: Evolving basic, pathological and clinical concepts in PD. Nature Reviews Neurology. 12 (2), 65-66 (2016).
  15. Poewe, W., et al. Parkinson disease. Nature Reviews Disease Primers. 3, 17013 (2017).
  16. Carlsson, T., Björklund, T. Restoration of the striatal dopamine synthesis for Parkinson’s disease: Viral vector-mediated enzyme replacement strategy. Current Gene Therapy. 7 (2), 109-120 (2007).
  17. Simon, D. K., Tanner, C. M., Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clinics in Geriatric Medicine. 36 (1), 1-12 (2020).
  18. Salat, D., Tolosa, E. Levodopa in the treatment of Parkinson’s disease: Current status and new developments. Journal of Parkinson’s Disease. 3 (3), 255-269 (2013).
  19. Senthilkumar, K. S., et al. Unilateral implantation of dopamine-loaded biodegradable hydrogel in the striatum attenuates motor abnormalities in the 6-Hydroxydopamine model of Hemi-Parkinsonism. Behavioral Brain Research. 184 (1), 11-18 (2007).
  20. Krishna, R., Ali, M., Moustafa, A. A. Effects of combined MAO-B inhibitors and levodopa vs. monotherapy in Parkinson’s disease. Frontiers Aging Neuroscience. 6, 180 (2014).
  21. Armstrong, M. J., Okun, M. S. Diagnosis and treatment of Parkinson disease: A review. JAMA. 323 (6), 548-560 (2020).
  22. Rivero Vaccari, J. P. Exosome-mediated inflammasome signaling after central nervous system injury. Journal of Neurochemistry. 136, 39-48 (2016).
  23. Han, D., Wu, C., Xiong, Q., Zhou, L., Tian, Y. Anti-inflammatory mechanism of bone marrow mesenchymal stem cell transplantation in rat model of spinal cord injury. Cell Biochemistry and Biophysics. 71 (3), 1341-1347 (2015).
  24. Vilaça-Faria, H., Salgado, A. J., Teixeira, F. G. Mesenchymal stem cells-derived exosomes: A new possible therapeutic strategy for Parkinson’s disease?. Cells. 8 (2), 118-135 (2019).
  25. Mendes-Pinheiro, B., et al. marrow mesenchymal stem cells secretome exerts neuroprotective effects in a Parkinson’s disease rat model. Frontiers in Bioengineering and Biotechnology. 7, 294 (2019).
  26. Kalani, A., Kamat, P. K., Chaturvedi, P., Tyagi, S. C., Tyagi, N. Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life Sciences. 107 (1-2), 1-7 (2014).
  27. Kalani, A., Tyagi, A., Tyagi, N. Exosomes: Mediators of neurodegeneration, neuroprotection, and therapeutics. Molecular Neurobiology. 49 (1), 590-600 (2014).
  28. Jamur, M. C., Oliver, C. Permeabilization of cell membranes. Methods in Molecular Biology. 588, 63-66 (2010).
  29. Rani, S., Ryan, A. E., Griffin, M. D., Ritter, T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Molecular Therapy. 23 (5), 812-823 (2015).
  30. Haney, M. J., et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release. 207, 18-30 (2015).
  31. Sun, D., et al. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy. 18 (9), 1606-1614 (2010).
  32. Tian, Y., et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 35 (7), 2383-2390 (2014).
  33. Yang, T., et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in danio rerio. Pharmaceutical Research. 32 (6), 2003-2014 (2015).
  34. Chen, H. X., et al. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Disease. 11 (4), 288 (2020).
  35. Yu, F., et al. Olfactory ensheathing cells seeded decellularized scaffold promotes axonal regeneration in spinal cord injury rats. Journal of Biomedical Materials Research. 109 (5), 779-787 (2020).
  36. Coughlan, C., et al. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Current Protocols in Cell Biology. 88 (1), 110 (2020).
  37. Qu, M., et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. Journal of Controlled Release. 287, 156-166 (2018).
  38. Kim, M. S., et al. Development of exosome-encapsulated paclitaxel to overcome MDR In cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine. 12 (3), 655-664 (2016).
  39. Branquinho, R. T., et al. HPLC-DAD and UV-spectrophotometry for the determination of lychnopholide in nanocapsule dosage form: Validation and application to release kinetic study. Journal of Chromatographic Science. 52 (1), 19-26 (2014).
  40. Karagöz Kutlutürk, I., et al. Producing aflibercept loaded poly (lactic-co-glycolic acid) [PLGA] nanoparticles as a new ocular drug delivery system and its challenges. Fresenius Environmental Bulletin. 30 (2), 1481-1493 (2021).
  41. Setiawatie, E. M., et al. Viability of nigella sativa toothpaste with SLS compared non-SLS on fibroblast cell culture. Journal of International Dental and Medical Research. 14 (2), 525-528 (2021).
  42. Jebelli, A., Khalaj-Kondori, M., Rahmati-Yamchi, M. The effect of beta-boswellic acid on the expression of Camk4 and Camk2α genes in the PC12 cell line. Advanced Pharmaceutical Bulletin. 10 (3), 437-443 (2020).
  43. Cantelmo, R. A., Santos, N. A., Santos, A. C., Regiane, S., Joca, L. Dual effects of S-Adenosyl-Methionine on Pc12 cells exposed to the dopaminergic neurotoxin MPP. Journal of Pharmacy and Pharmacology. 72 (10), 1427-1435 (2020).
  44. Mulcahy, L. A., Pink, R. C., Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. Journal of Extracell Vesicles. 3, (2014).
  45. Kooijmans, S. A., Vader, P., van Dommelen, S. M., van Solinge, W. W., Schiffelers, R. M. Exosome mimetics: A novel class of drug delivery systems. International Journal of Nanomedicine. 7 (1), 1525-1541 (2012).
  46. Yuan, Z., Kolluri, K. K., Gowers, K. H., Janes, S. M. Trail delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. Journal Extracell Vesicles. 6 (1), 1265291 (2017).
  47. Darici, H., Sun, E., Koyuncu-Irmak, D., Karaöz, E., Khan, M. Mesenchymal stem cells for the treatment of COVID-19: Why and when they should be used? in Human Mesenchymal Stem Cells. Journal of Stem Cells. 4 (15), 159-181 (2021).
  48. Koyuncu-Irmak, D., Darici, H., Karaoz, E. Stem cell-based therapy option in COVID-19: Is it promising?. Aging and Disease. 11 (5), 1174-1191 (2020).
  49. Leblanc, P., et al. Isolation of exosomes and microvesicles from cell culture systems to study prion transmission. Exosomes Microvesicles. 1545, 153-176 (2017).
  50. Fuhrmann, G., Serio, A., Mazo, M., Nair, R., Stevens, M. M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect Of porphyrins. Journal of Control Release. 205, 35-44 (2015).
  51. Mehryab, F., et al. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomaterialia. 113, 42-62 (2020).
  52. Zhang, Y., et al. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. International Journal of Nanomedicine. 15, 6917-6934 (2020).
check_url/kr/63624?article_type=t

Play Video

Cite This Article
Yavuz, B., Darici, H., Zorba Yildiz, A. P., Abamor, E. Ş., Topuzoğullari, M., Bağirova, M., Allahverdiyev, A., Karaoz, E. Formulating and Characterizing an Exosome-based Dopamine Carrier System. J. Vis. Exp. (182), e63624, doi:10.3791/63624 (2022).

View Video