Summary

Teknisk forbedring af en bilateral renal iskæmi-reperfusionsmusemodel til forskning i akut nyreskade

Published: November 03, 2023
doi:

Summary

Denne undersøgelse etablerede en protokol med fokus på den tekniske forfining af en musemodel af bilateral renal iskæmi-reperfusion til forskning i akut nyreskade.

Abstract

Hjertestop udgør en stor folkesundhedsbyrde. Akut nyreskade (AKI) er en negativ markør hos overlevende efter hjertestop efter tilbagevenden af spontan cirkulation (ROSC) efter vellykket hjerte-lungeredning. Omvendt er genopretning af nyrefunktion fra AKI en forudsigelse for gunstige neurologiske resultater og hospitalsudskrivning. Imidlertid mangler en effektiv intervention for at forhindre nyreskade forårsaget af hjertestop efter ROSC, hvilket tyder på, at der kræves yderligere terapeutiske strategier. Renal hypoperfusion og reperfusion er to patofysiologiske mekanismer, der forårsager AKI efter hjertestop. Dyremodeller af iskæmi-reperfusionsinduceret AKI (IR-AKI) af begge nyrer er sammenlignelige med patienter med AKI efter ROSC i kliniske omgivelser. IR-AKI af begge nyrer er dog teknisk udfordrende at analysere, fordi modellen er forbundet med høj dødelighed og stor variation i nyreskade, hvilket kan påvirke analysen. Letvægtsmus blev valgt, placeret under generel anæstesi med isofluran, udsat for kirurgi med en dorsolateral tilgang, og deres kropstemperatur opretholdes under drift, hvorved vævsskade reduceres og etablering af en reproducerbar akut renal IR-AKI forskningsprotokol.

Introduction

Hjertestop forekommer mere end 80.000 gange årligt i USA 1,2. Dødeligheden ved hjertestop er ekstremt høj 3,4,5,6. AKI er en væsentlig risikofaktor forbundet med høj dødelighed og dårlige neurologiske resultater hos patienter med hjertestop efter ROSC 7,8,9,10,11,12,13. Genopretning fra AKI er en god forudsigelse for gunstige neurologiske resultater og udskrivning fra hospitalet14,15,16. Imidlertid mangler effektive terapier til IR-AKI stadig 15,16,17,18,19. Yderligere terapeutiske strategier er nødvendige for yderligere at forbedre de kliniske resultater af sygdommen.

IR-AKI med bilateral renal iskæmi tilgang er en af de dyremodeller, der anvendes til AKI forskning 20,21,22,23,24,25,26. Renal IR-AKI dyremodeller er mindre komplicerede end en helkrops IR-skademodel til undersøgelse af AKI hos patienter med pludseligt hjertestop efter ROSC 6,27,28,29,30. Dette indebærer, at konsistente resultater fra en renal IR-AKI dyremodel er lettere at opnå på grund af tilstedeværelsen af færre forstyrrende faktorer i forsøg. Desuden involverer renal IR-AKI protokoller almindeligvis en ensidig eller bilateral renal pedikelokklusion. Betingelser i forsøg med bilateral renal IR-AKI er sammenlignelige med kliniske tilstande for AKI efter ROSC hos patienter med pludseligt hjertestop efter vellykket hjerte-lungeredning. Selvom nyrernes patologiske egenskaber i begge modeller afspejler de patologiske egenskaber ved human renal IR-skade 31,32,33, er en bilateral renal iskæmi-tilgang mere relevant for AKI under humane patologiske tilstande, såsom hjertesvigt, vasokonstriktion og septisk shock 35. Bilaterale renale IR-AKI dyremodeller er egnede til studier med fokus på nyre-IR-skader ved hjertestop efter ROSC.

Bilaterale renal IR-AKI modeller er forbundet med tekniske vanskeligheder, eksperimentel kompleksitet og lang kirurgisk varighed 23,26,32,33,35,36. For at overvinde disse tekniske vanskeligheder etablerede denne undersøgelse en pålidelig bilateral IR-AKI forskningsprotokol i mus ved at foretage nogle tekniske ændringer. Den foreslåede protokol resulterede i færre kirurgiske komplikationer, mindre vævsskade og en lavere sandsynlighed for dødelighed under operationen. Derfor kan det bruges til at undersøge de patofysiologiske processer i AKI efter ROSC for at udvikle nye terapeutiske strategier mod renal hypoperfusion og reperfusionsskade37,38,39.

Protocol

Alle dyreforsøg blev udført i overensstemmelse med vejledningen til pleje og brug af forsøgsdyr, udgivet af US National Institutes of Health (NIH-publikation nr. 85-23, revideret 1996). Undersøgelsesprotokollen blev godkendt af og i overensstemmelse med retningslinjerne fra Institutional Animal Care and Use Committee ved Fu-Jen Catholic University. Se materialefortegnelsen for detaljer om alle materialer og instrumenter, der anvendes i denne protokol. 1. Kla…

Representative Results

Kvaliteten af den bilaterale renale IR-AKI kirurgi bør vurderes før yderligere mikroskopisk eller molekylær analyse. Under operationen bør nyreiskæmi bekræftes ved at se, om nyrerne har ændret farve fra lyserød til mørkerød kort efter, at nyrepediklen er fastspændt med et mikrovaskulært klip (figur 1). Efter operationen kan nyreskader forårsaget af IR-AKI kirurgi valideres yderligere med et par mikroliter serum gennem submandibulær blodindsamling til biokemisk analyse, hvor res…

Discussion

Den foreslåede bilaterale IR-AKI-protokol er egnet til undersøgelse af mekanismen for hypoperfusion og reperfusionsskade i begge nyrer. Protokollen antyder, at lette mus, generel anæstesi med isofluran, en dorsolateral tilgang til operationen og vedligeholdelse af kropstemperatur under operationen mindsker de tilknyttede tekniske vanskeligheder, forkorter operationens varighed og øger konsistensen af proceduren for akut bilateral renal IR-AKI forskning.

Tekniske vanskeligheder påvirker sv…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denne model blev udviklet med økonomisk støtte fra Ministeriet for Videnskab og Teknologi, Taiwan (MOST 109-2320-B-030-006-MY3). Dette manuskript blev redigeret af Wallace Academic Editing.

Materials

Absorbable Suture, 6-0 Ethicon J510G-BX
Betadine solution Shineteh Istrument
Carprofen Sigma PHR1452
Cotton balls Shineteh Istrument
Graefe Forceps Fine Science Tools 11051-10
Heating pad Shineteh Istrument
Isoflurane Piramal Critical Care Inc. 26675-46-7
Moria Vessel Clamp Fine Science Tools 18320-11
Olsen-Hegar needle holder Fine Science Tools 12002 – 12
Saline Shineteh Istrument
Scalpel blades Shinva s2646
Small Animal Anesthesia Machine Sheng-Cing Instruments Co. STEP AS-01
Tissue scissors Fine Science Tools 14072 – 10

References

  1. Holmberg, M. J., et al. Annual incidence of adult and pediatric in-hospital cardiac arrest in the United States. Circulation: Cardiovascular Quality and Outcomes. 12 (7), 005580 (2019).
  2. Benjamin, E. J., et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 137 (12), 67 (2018).
  3. Lascarrou, J. B., et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. The New England Journal of Medicine. 381 (24), 2327-2337 (2019).
  4. Chang, H. C., et al. Factors affecting outcomes in patients with cardiac arrest who receive target temperature management: The multi-center TIMECARD registry. Journal of the Formosan Medical Association. 121 (1), 294-303 (2022).
  5. Yu, G., et al. Comparison of the survival and neurological outcomes in OHCA based on smoking status: investigation of the existence of the smoker’s paradox. Signa Vitae. 18 (2), 121-129 (2022).
  6. Chen, Y. C., et al. Major interventions are associated with survival of out of hospital cardiac arrest patients – a population based survey. Signa Vitae. 13 (2), 108-115 (2017).
  7. Sandroni, C., et al. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiologica. 82 (9), 989-999 (2016).
  8. Patyna, S., et al. Acute kidney injury after in-hospital cardiac arrest in a predominant internal medicine and cardiology patient population: incidence, risk factors, and impact on survival. Renal Failure. 43 (1), 1163-1169 (2021).
  9. Storm, C., et al. Impact of acute kidney injury on neurological outcome and long-term survival after cardiac arrest – A 10 year observational follow up. Journal of Critical Care. 47, 254-259 (2018).
  10. Geri, G., et al. Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Medicine. 41 (7), 1273-1280 (2015).
  11. Guo, Q. Y., Xu, J., Shi, Q. D. Gasping as a predictor of short- and long-term outcomes in patients with cardiac arrest: a systematic review and meta-analysis. Signa Vitae. 17 (2), 208-213 (2021).
  12. Chen, P. C., et al. Prognostic factors for adults with cardiac arrest in the emergency department: a retrospective cohort study. Signa Vitae. 18 (3), 56-64 (2022).
  13. Lee, M. J., et al. Predictors of survival and good neurological outcomes after in-hospital cardiac arrest. Signa Vitae. 17 (2), 67-76 (2021).
  14. Deakin, C. D., et al. European Resuscitation Council guidelines for resuscitation 2010 section 4. adult advanced life support. Resuscitation. 81 (10), 1305-1352 (2010).
  15. Cha, K. C., et al. Recovery from acute kidney injury is an independent predictor of survival at 30 days only after out-of-hospital cardiac arrest who were treated by targeted temperature management. Signa Vitae. 17 (2), 119-126 (2021).
  16. Park, Y. S., et al. Recovery from acute kidney injury as a potent predictor of survival and good neurological outcome at discharge after out-of-hospital cardiac arrest. Critical Care. 23 (1), 256 (2019).
  17. Mah, K. E., et al. Acute kidney injury after in-hospital cardiac arrest. Resuscitation. 160, 49-58 (2021).
  18. Pelkey, T. J., et al. Minimal physiologic temperature variations during renal ischemia alter functional and morphologic outcome. Journal of Vascular Surgery. 15 (4), 619-625 (1992).
  19. Kim, H., et al. Effect of different combinations of initial body temperature and target temperature on neurological outcomes in out-of-hospital cardiac arrest patients treated with targeted temperature management. Signa Vitae. , 1-7 (2022).
  20. Wyss, J. C., et al. Differential effects of the mitochondria-active tetrapeptide SS-31 (D-Arg-dimethylTyr-Lys-Phe-NH2) and its peptidase-targeted prodrugs in experimental acute kidney injury. Frontiers in Pharmacology. 10, 1209 (2019).
  21. Wang, Y., Wang, B., Qi, X., Zhang, X., Ren, K. Resveratrol protects against post-contrast acute kidney injury in rabbits with diabetic nephropathy. Frontiers in Pharmacology. 10, 833 (2019).
  22. Li, S., Yu, L., He, A., Liu, Q. Klotho inhibits unilateral ureteral obstruction-induced endothelial-to-mesenchymal transition via TGF-beta1/Smad2/Snail1 signaling in mice. Frontiers in Pharmacology. 10, 348 (2019).
  23. Godoy, J. R., Watson, G., Raspante, C., Illanes, O. An effective mouse model of unilateral renal ischemia-reperfusion injury. Journal of Visualized Experiments. (173), e62749 (2021).
  24. Chen, Q., et al. SIRT1 mediates effects of FGF21 to ameliorate cisplatin-induced acute kidney injury. Frontiers in Pharmacology. 11, 241 (2020).
  25. Li, H. D., et al. Application of herbal traditional Chinese medicine in the treatment of acute kidney injury. Frontiers in Pharmacology. 10, 376 (2019).
  26. Grenz, A., et al. Use of a hanging-weight system for isolated renal artery occlusion during ischemic preconditioning in mice. American Journal of Physiology-Renal Physiology. 292, 475-485 (2007).
  27. Gao, Q., et al. Accumulated epinephrine dose is associated with acute kidney injury following resuscitation in adult cardiac arrest patients. Frontiers in Pharmacology. 13, 806592 (2022).
  28. Oh, Y. T., et al. Vasoactive-inotropic score as a predictor of in-hospital mortality in out-of-hospital cardiac arrest. Signa Vitae. 15 (2), 40-44 (2019).
  29. Burne-Taney, M. J., et al. Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. American Journal of Physiology-Renal Physiology. 285 (1), 87-94 (2003).
  30. Adams, J. A., et al. Periodic acceleration (pGz) prior to whole body ischemia reperfusion injury provides early cardioprotective preconditioning. Life Sciences. 86 (19-20), 707-715 (2010).
  31. Gaut, J. P., Liapis, H. Acute kidney injury pathology and pathophysiology: a retrospective review. Clinical Kidney Journal. 14 (2), 526-536 (2021).
  32. Hesketh, E. E., et al. Renal ischaemia reperfusion injury: a mouse model of injury and regeneration. Journal of Visualized Experiments. (88), e51816 (2014).
  33. Wei, Q., Dong, Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. American Journal of Physiology-Renal Physiology. 303 (11), 1487-1494 (2012).
  34. Wei, Q., Dong, Z. Regulation and pathological role of bid in ischemic acute kidney injury. Renal Failure. 29 (8), 935-940 (2007).
  35. Grenz, A., et al. Use of a hanging-weight system for isolated renal artery occlusion. Journal of Visualized Experiments. (53), e2549 (2011).
  36. Skrypnyk, N. I., Harris, R. C., de Caestecker, M. P. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice. Journal of Visualized Experiments. (78), e50495 (2013).
  37. Han, S. J., Lee, H. T. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Research and Clinical Practice. 38 (4), 427-440 (2019).
  38. Huang, C. W., et al. A novel caffeic acid derivative prevents renal remodeling after ischemia/reperfusion injury. Biomedicine & Pharmacotherapy. 142, 112028 (2021).
  39. Spoelstra-de Man, A. M. E., Oudemans-van Straaten, H. M. Acute kidney injury after cardiac arrest: the role of coronary angiography and temperature management. Critical Care. 23 (1), 193 (2019).
  40. Burne, M. J., Haq, M., Matsuse, H., Mohapatra, S., Rabb, H. Genetic susceptibility to renal ischemia reperfusion injury revealed in a murine model. Transplantation. 69 (5), 1023-1025 (2000).
  41. Muller, V., et al. Sexual dimorphism in renal ischemia-reperfusion injury in rats: possible role of endothelin. Kidney International. 62 (4), 1364-1371 (2002).
  42. Schmitt, R., Marlier, A., Cantley, L. G. Zag expression during aging suppresses proliferation after kidney injury. Journal of the American Society of Nephrology. 19 (12), 2375-2383 (2008).
  43. Oxburgh, L., de Caestecker, M. P. Ischemia-reperfusion injury of the mouse kidney. Methods in Molecular Biology. 886, 363-379 (2012).
  44. Delbridge, M. S., Shrestha, B. M., Raftery, A. T., El Nahas, A. M., Haylor, J. L. The effect of body temperature in a rat model of renal ischemia-reperfusion injury. Transplantation Proceedings. 39 (10), 2983-2985 (2007).
  45. IBM Micromedx, I. Phenobarbital sodium. IBM Corporation Available from: https://www-micromedexsolutions-com.autorpa.mmh.org.tw/micromedex2/librarian/CS/53C834/ND_PR/evidencexpert/ND_P/evidencexpert/DUPLICATIONSHIELDSYNC/51EFF0/ND_PG/evidencexpert/ND_B/evidencexpert/ND_AppProduct/evidencexpert/ND_T/evidencexpert/PFActionId/evidencexpert.DoIntegratedSearch?SearchTerm=Phenobarbital+Sodium&fromInterSaltBase=true&UserMdxSearchTerm=%24userMdxSearchTerm&false=null&=null (2022)
  46. IBM Micromedx, Isoflurane. IBM Corporation Available from: https://www-micromedexsolutions-com.autorpa.mmh.org.tw/micromedex2/librarian/PFDefaultActionId/evidencexpert.DoIntegratedSearch?navitem=headerLogout (2022)
check_url/kr/63957?article_type=t

Play Video

Cite This Article
Ku, H., Huang, C., Lee, S. Y. Technical Refinement of a Bilateral Renal Ischemia-Reperfusion Mouse Model for Acute Kidney Injury Research. J. Vis. Exp. (201), e63957, doi:10.3791/63957 (2023).

View Video