Summary

肝细胞癌原位小鼠模型中的无创PET/MR成像

Published: August 31, 2022
doi:

Summary

在这里,我们提出了一种方案来创建有和没有肝动脉结扎的原位肝细胞癌异种移植物,并使用[18 F]氟咪唑([18 F]FMISO)和[18 F]氟脱氧葡萄糖([18F]FDG)对肿瘤缺氧进行非侵入性正电子发射断层扫描(PET)成像。

Abstract

肝细胞癌(HCC)的临床前实验模型概括了人类疾病,是研究肿瘤发生和评估新治疗方法的重要工具。使用正电子发射断层扫描 (PET) 的非侵入性全身成像可在分子水平上实时提供对组织体内特征的关键见解。我们在这里提出了一个原位HCC异种移植物创建的方案,有和没有肝动脉结扎(HAL)诱导肿瘤缺氧,并使用[18 F]氟咪唑([18 F]FMISO)和[18 F]氟脱氧葡萄糖([18F]FDG)PET/磁共振(MR)成像评估其体内肿瘤代谢。使用缺氧标记物[18 F]FMISO可以很容易地观察到肿瘤缺氧,并且发现接受HAL的HCC小鼠的[18 F]FMISO摄取高于非HAL组,而[18F]FDG无法区分两组之间的肿瘤缺氧。HAL肿瘤在缺氧反应中也表现出更高水平的缺氧诱导因子(HIF)-1α表达。HAL肿瘤的定量显示,基于标准化价值摄取(SUV)方法的[18F] FMISO摄取增加了2.3倍。

Introduction

肝细胞癌 (HCC) 是全球第六大确诊癌症和第三大常见癌症死因,2020 年新增病例超过 900,000 例,死亡800,000 例 1.主要危险因素是肝硬化,这是病毒感染(乙型和丙型肝炎病毒)、酗酒、糖尿病和非酒精性脂肪性肝炎2 的结果。肝细胞癌的管理相当复杂,有几种治疗选择,包括手术切除、热消融或化学消融、移植、经动脉化疗栓塞、放疗和化疗,具体取决于疾病分期23。肝细胞癌是一种化疗难治性肿瘤,在根治性治疗后,多达 70% 的患者会复发2

尽管肿瘤异质性很高,但肝细胞癌与两种常见结局有关:(i)肝细胞癌非常缺氧,(ii)肿瘤缺氧与更大的肿瘤侵袭性和治疗失败有关。HCC细胞不受控制的增殖导致血管形成前的高耗氧率,从而产生缺氧微环境。低肿瘤内氧水平会触发一系列影响肿瘤侵袭性和治疗反应的生物反应。缺氧诱导因子(HIF)通常被认为是对缺氧反应的基本转录调节因子23。因此,检测缺氧的能力对于可视化肿瘤组织和识别需要侵入性手术的难以接近的部位至关重要。它还有助于更好地了解导致肿瘤侵袭性的分子变化并改善患者的治疗结果。

使用正电子发射断层扫描(PET)的分子成像通常用于许多癌症(包括HCC)的诊断和分期。特别是,联合使用涉及 [18F] 氟脱氧葡萄糖 ([18F]FDG) 和 [11C] 乙酸盐的双示踪 PET 成像可显著提高肝细胞癌诊断的总体敏感性45。另一方面,缺氧成像可以通过使用常用的缺氧标记物[18 F]氟米索硝唑([18F]FMISO)来实现。在临床实践中,缺氧的无创评估对于区分各种类型的肿瘤和放射治疗计划的区域非常重要6。

临床前成像已成为对不同疾病的小鼠模型进行无创和纵向评估不可或缺的工具。稳健且高度可重复的HCC模型代表了人类HCC病理生理学的临床前和转化研究以及新疗法评估的重要平台。结合PET成像,可以阐明体内行为,以在任何给定时间点提供分子水平的重要见解。在这里,我们描述了用于生成肝动脉结扎(HAL)原位HCC异种移植物的方案,并使用[18 F]FMISO和[18F]FDG PET / MR分析其体内肿瘤代谢。HAL的掺入使得转基因或化学诱导的HCC小鼠异种移植物成为研究体内肿瘤缺氧的合适模型,因为HAL可以有效阻断动脉血液供应以诱导肿瘤内缺氧78此外,与使用匹莫硝唑的离体免疫组织化学染色不同,缺氧引起的肿瘤代谢变化可以很容易地使用PET成像进行无创可视化和准确定量,从而能够纵向评估治疗反应或测量耐药性的出现378.我们这里显示的方法允许创建一个强大的缺氧HCC模型,以及使用PET / MR成像对肿瘤缺氧进行无创监测,以研究体内HCC生物学。

Protocol

所有动物研究均按照香港大学比较医学研究中心(CCMR)的活体动物教学和研究委员会(CULATR)进行,该委员会是国际实验动物护理评估和认证协会(AAALAC)认可的计划。研究中使用的动物是6-8周龄的雌性BALB / cAnN-nu(裸体)小鼠,体重为20g±2g。食物和水是 随意提供的。 1.皮下注射人肝细胞癌细胞系 注意:MHCC97是一种人HCC细胞系,用于?…

Representative Results

为了获得适合连续原位植入的肿瘤阻滞,首先通过将DPBS(含有MHCC97L细胞)中的200μL细胞悬液皮下注射到裸鼠的下侧来产生稳定的克隆(图1A)。监测肿瘤生长,当肿瘤大小达到800-1000mm 3(注射后约4周)时,对小鼠实施安乐死,并将所得肿瘤块切成约1mm3片段,随后将肝原位植入另一批裸鼠(n = 6)。将小鼠随机分为两组:对照组(C1,n = 3)和肝动脉结扎术(…

Discussion

在这项研究中,我们描述了使用皮下肿瘤对肝原位HCC异种移植物进行HAL的程序,以及使用[18 F]FMISO和[18F]FDG PET / MR对原位异种移植物中肿瘤缺氧进行无创监测的方法。我们的兴趣在于各种癌症和疾病模型的代谢成像,用于早期诊断和治疗反应评估11131415迄今为止,HAL HCC异种移?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢香港抗癌信托基金、香港研究资助局合作研究基金(CRF C7018-14E)对小动物影像实验的支持。我们亦感谢香港大学分子成像及医学回旋加速器中心(MIMCC)提供[18 F]FMISO及[18F]FDG的支持。

Materials

0.9% sterile saline BBraun N/A 0.9% sodium chloride intravenous infusion, 500 mL
10# Scalpel blade RWD Life Science Co.,ltd S31010-01 Animal surgery tool
10% povidone-iodine solution Banitore 6.425.678 For disinfection
25G needle with a 1 mL syringe BD PrecisionGlide N/A 1 mL syringe with 25G needle for cell suspensions injections
5 mL syringe Terumo SS05L 5 mL syringe Luer Lock
70% Ethanol Merck 1.07017 For disinfection
Automated Cell Counter Invitrogen AMQAF2000 For automated cell counting
Buprenorphine HealthDirect N/A Subcutaneous injection (0.05-0.2 mg/kg/12 hours) for analgesic after surgery
Cell Culture Dish (60 mm diameter) Thermo Scientific 150462 For tumor tissue processing
Centrifuge Sigma 3-16KL, fixed-angle rotor 12311 For cell suspensions collection
Centrifuge Conical Tube Eppendorf EP0030122151 For cell suspensions collection
Culture media (Dulbecco’s modified Eagle’s medium) Gibco 10566024 high glucose, GlutaMAX™ Supplement
Digital Caliper RS PRO 841-2518 For subcutaneous tumor size measurement
Direct heat CO2 incubator Techcomp Limited NU5841 For cell culture
Dose calibrator Biodex  N/A Atomlab 500
DPBS (Dulbecco’s phosphate-buffered saline) Gibco 14287072 For cell wash and injection
Eye lubricant Alcon Duratears  N/A Sterile ocular lubricant ointment, 3.5 g
Fetal bovine serum (FBS) Gibco A4766801 Used for a broad range of cell types, especially sensitive cell lines
Forceps (curved fine and straight blunt) RWD Life Science Co.,ltd F12012-10 & F12011-13 Animal surgery tool
Heating pad ALA Scientific Instruments N/A Heat pad for mice during surgery
Insulin syringe Terumo 10ME2913 1 mL insulin syringe with needle for radiotracer injections
InterView fusion software Mediso Version 3.03 Post-processing and image analysis software
Inverted microscope Yu Lung Scientific Co., Ltd BM-209G For cells morphology visualization
Isoflurane Chanelle Pharma  N/A Iso-Vet, inhalation anesthetic, 250 mL
Ketamine Alfasan International B.V. HK-37715 Ketamine 10% injection solution, 10 mL 
Medical oxygen Linde HKO 101-HR compressed gas, 99.5% purity
nanoScan PET/MR Scanner Mediso  N/A 3 Tesla MR
Needle holder RWD Life Science Co.,ltd F31026-12 Animal surgery tool
Nucline nanoScan software Mediso Version 3.0 Scanner operating software
Nylon Suture (6/0 and 5/0) Healthy Medical Company Ltd 000524 & 000526 Animal surgery tool
Penicillin- Streptomycin Gibco 15140122 Culture media for a final concentration of 50 to 100 I.U./mL penicillin and 50 to 100 µg/mL streptomycin.
Pentabarbital AlfaMedic 13003 Intraperitoneal injection (330 mg/kg) to induce cessation of breathing of mice
Sharp scissors RWD Life Science Co.,ltd S14014-10 Animal surgery tool
Spring Scissors RWD Life Science Co.,ltd S11005-09 Animal surgery tool
Trypan Blue Solution, 0,4% Gibco 15250061 For cell counting
Trypsin-ethylenediaminetetraacetic acid (EDTA, 0.25%), phenol red. Gibco 25200072 For cell digestion
Xylazine Alfasan International B.V. HK-56179 Xylazine 2% injection solution, 30 mL

References

  1. Sung, H., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 71 (3), 209-249 (2021).
  2. Chen, C., Lou, T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget. 8 (28), 46691-46703 (2017).
  3. Lu, R. -. C., et al. Positron-emission tomography for hepatocellular carcinoma: Current status and future prospects. World Journal of Gastroenterology. 25 (32), 4682-4695 (2019).
  4. Larsson, P., et al. Adding 11C-acetate to 18F-FDG at PET examination has an incremental value in the diagnosis of hepatocellular carcinoma. Molecular Imaging and Radionuclide Therapy. 21 (1), 6-12 (2012).
  5. Huo, L., et al. Kinetic analysis of dynamic 11C-acetate PET/CT imaging as a potential method for differentiation of hepatocellular carcinoma and benign liver lesions. Theranostics. 5 (4), 371-377 (2015).
  6. Lopci, E., et al. PET radiopharmaceuticals for imaging of tumor hypoxia: A review of the evidence. American Journal of Nuclear Medicine and Molecular Imaging. 4 (4), 365-384 (2014).
  7. Mao, X., et al. Mechanisms through which hypoxia-induced caveolin-1 drives tumorigenesis and metastasis in hepatocellular carcinoma. 암 연구학. 76 (24), 7242-7253 (2016).
  8. Kung-Chun Chiu, D., et al. Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death & Disease. 10 (12), 934 (2019).
  9. Li, Y., et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World Journal of Gastroenterology. 7 (5), 630-636 (2001).
  10. Faustino-Rocha, A., et al. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Animal. 42 (6), 217-224 (2013).
  11. Liu, Q., Tan, K. V., Chang, H. C., Khong, P. L., Hui, X. Visualization and quantification of brown and beige adipose tissues in mice using [18F] FDG micro-PET/MR imaging. Journal of Visualized Experiments: JoVE. (173), e62460 (2021).
  12. Lin, W. -. H., et al. Hypoxia-activated cytotoxic agent tirapazamine enhances hepatic artery ligation-induced killing of liver tumor in HBx transgenic mice. Proceedings of the National Academy of Sciences. 113 (42), 11937-11942 (2016).
  13. Wong, T. L., et al. CRAF methylation by PRMT6 regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. Hepatology. 71 (4), 1279-1296 (2020).
  14. Yang, X., et al. Development of cisplatin-loaded hydrogels for trans-portal vein chemoembolization in an orthotopic liver cancer mouse model. Drug Delivery. 28 (1), 520-529 (2021).
  15. Shi, J., et al. Longitudinal evaluation of five nasopharyngeal carcinoma animal models on the microPET/MR platform. European Journal of Nuclear Medicine and Molecular Imaging. 49 (5), 1497-1507 (2021).
  16. Kilian, K., et al. Imaging of hypoxia in small animals with F fluoromisonidasole. Nukleonika. 61 (2), 219-223 (2016).
  17. Kawamura, M., et al. Evaluation of optimal post-injection timing of hypoxic imaging with 18F-Fluoromisonidazole-PET/CT. Molecular Imaging and Biology. 23 (4), 597-603 (2021).
check_url/kr/63958?article_type=t

Play Video

Cite This Article
Tan, K. V., Yang, X., Chan, C. Y., Shi, J., Chang, H., Chiu, K. W., Man, K. Non-Invasive PET/MR Imaging in an Orthotopic Mouse Model of Hepatocellular Carcinoma. J. Vis. Exp. (186), e63958, doi:10.3791/63958 (2022).

View Video