Summary

Osservazione del comportamento fotografico in Chlamydomonas reinhardtii

Published: May 06, 2022
doi:

Summary

La maggior parte degli organismi fotoautotrofici che nuotano mostrano cambiamenti comportamentali fotoindotti (comportamento fotografico). Il presente protocollo osserva il suddetto comportamento fotografico nell’organismo modello Chlamydomonas reinhardtii.

Abstract

Per la sopravvivenza dei microrganismi fototrofici mobili, essere in condizioni di luce adeguate è fondamentale. Di conseguenza, mostrano comportamenti fotoindotti (o fotocomportamenti) e alterano la loro direzione di movimento in risposta alla luce. I comportamenti fotografici tipici includono la risposta al fotoshock (o fotofobico) e la fototassi. Il photoshock è una risposta a un improvviso cambiamento dell’intensità della luce (ad esempio, l’illuminazione del flash), in cui gli organismi smettono temporaneamente di muoversi o si muovono all’indietro. Durante la fototaxi, gli organismi si muovono verso la sorgente luminosa o nella direzione opposta (chiamata fototassi positiva o negativa, rispettivamente). L’alga verde unicellulare Chlamydomonas reinhardtii è un organismo eccellente per studiare il comportamento fotografico perché cambia rapidamente il suo modello di nuoto modulando il battito delle ciglia (alias flagelli) dopo la fotoricezione. Qui, vengono mostrati vari metodi semplici per osservare i comportamenti fotografici in C. reinhardtii. La ricerca sui fotocomportamenti di C. reinhardtii ha portato alla scoperta di meccanismi regolatori comuni tra ciglia eucariotiche e channelrhodopsins, che possono contribuire a una migliore comprensione delle ciliopatie e allo sviluppo di nuovi metodi optogenetici.

Introduction

La luce è una fonte di energia indispensabile per gli organismi fotosintetici, ma troppa luce può causare danni fotoossidanti. Pertanto, gli organismi fototrofici devono sopravvivere sotto una luce di intensità moderata, dove possono fotosintetizzare ma non subire danni foto-ossidativi1. Nelle piante terrestri, i cloroplasti non possono uscire dalla foglia e mostrare movimenti fotografici nella cellula; i cloroplasti si spostano alla periferia della cellula in condizioni di luce intensa e la superficie cellulare in condizioni di scarsa illuminazione2, mentre molte alghe mobili mostrano fotocomportamenti che consentono loro di trovare condizioni di luce adeguate per la fotosintesi e, quindi, facilitare la loro sopravvivenza3.

Chlamydomonas reinhardtii è un’alga verde unicellulare considerata un organismo modello in campi di ricerca come le ciglia (alias flagelli), la fotosintesi e il fotocomportamento. C. reinhardtii si presenta con una macchia oculare e due ciglia per cellula, utilizzate rispettivamente per la fotoricezione e il nuoto. La macchia oculare ha due componenti: le channelrhodopsins (ChRs), i canali ionici light-gated nella membrana plasmatica e gli strati di granuli ricchi di carotenoidi situati proprio dietro i ChRs. La macchia oculare agisce come un recettore della luce direzionale poiché gli strati di granuli ricchi di carotenoidi funzionano come un riflettore di luce 4,5.

I ChR sono stati inizialmente identificati come fotorecettori che causano fotocomportamenti in C. reinhardtii 6,7,8,9. Sebbene due isoforme, ChR1 e ChR2, si trovino nella macchia oculare, esperimenti di abbattimento hanno dimostrato che ChR1 è il fotorecettore primario per i fotocomportamenti10. Nonostante ciò, ChR2 ha ricevuto maggiore attenzione e ha svolto un ruolo centrale nello sviluppo dell’optogenetica, una tecnica per controllare l’eccitazione cellulare mediante la luce11. Pertanto, lo studio dei meccanismi regolatori che regolano i fotocomportamentatori in C. reinhardtii favorirà la comprensione della funzione ChR e migliorerà l’optogenetica.

Dopo la fotoricezione, le cellule di C. reinhardtii mostrano due tipi di fotocomportamenti: fototaxi e risposta al fotoshock12. La fototaxi è il comportamento delle cellule che nuotano nella direzione della sorgente luminosa o nella direzione opposta, chiamata fototassi positiva o negativa, rispettivamente. La risposta al fotoshock è un comportamento che le cellule mostrano dopo aver rilevato un improvviso cambiamento nell’intensità della luce, ad esempio quando illuminato da un flash. Le cellule smettono di nuotare o nuotano all’indietro (cioè nuotano con il corpo cellulare in avanti) per un breve periodo, in genere <1 s.

I movimenti ciliari in C. reinhardtii sono coinvolti nei suoi fotocomportamenti. Due ciglia di solito battono come la rana di un essere umano che nuota, e questo è modulato per i fotocomportamenti. Per la fototassi, le forze generate dalle due ciglia sono sbilanciate dalla modulazione della frequenza di battitura e dall’ampiezza della forma d’onda di ciascun cilio13. Il cilio più vicino alla macchia oculare è chiamato cis cilium e l’altro è chiamato trans cilium. Queste due ciglia differiscono su vari punti. Ad esempio, la frequenza di battitura ciliare del transcilio in vitro è del 30%-40% superiorea 14. Inoltre, la loro sensibilità Ca2+ è diversa. La riattivazione dei modelli di cellule demembranate15 ha mostrato che il cis cilium batte più fortemente del trans cilium per Ca2+ <1 x 10−8 M, mentre il contrario è vero per Ca2+ >1 x 10−7 M. Questa asimmetria nella sensibilità di Ca2+ è probabilmente importante per i turni fototattici poiché i mutanti privi di questa asimmetria non presentano una normale fototassi16,17. Al contrario, la conversione della forma d’onda è necessaria per il photoshock. La forma d’onda ciliare si trasforma dalla forma d’onda asimmetrica nel nuoto in avanti alla forma d’onda simmetrica nel nuoto all’indietro. Questa conversione della forma d’onda è regolata anche da Ca2+, ad una soglia di 1 x 10−4 M18,19. Poiché i difetti nella regolazione dei movimenti ciliari causano discinesia ciliare primaria negli esseri umani, lo studio dei fotocomportamentatori in C. reinhardtii potrebbe aiutare a comprendere meglio queste malattie e gli sviluppi terapeutici20.

Qui, vengono dimostrati quattro semplici metodi per osservare i fotocomportamentatori in C. reinhardtii . In primo luogo, viene mostrato un test di fototassi utilizzando piastre di Petri e, in secondo luogo, un test di fototassi contro le goccioline di sospensione cellulare. Il fenomeno osservato in entrambi i casi non è strettamente fototaxi ma fotoaccumulo, dove le cellule tendono ad accumularsi vicino al lato della sorgente luminosa o al lato opposto. In C. reinhardtii, il fotoaccumulo è causato principalmente dalla fototassi in un modo che può essere usato come approssimazione alla fototassi. In terzo luogo, viene mostrato un test più rigoroso per la fototassi al microscopio, e l’ultimo è un test di fotoshock al microscopio.

Protocol

Nel presente studio, un ceppo wild-type di Chlamydomonas reinhardtii, una progenie della croce CC-124 x CC-125 con agg1+mt-, è stato utilizzato21. CC-124 e CC-125 sono stati ottenuti dal Chlamydomonas Resource Center (vedi Tabella dei materiali) e mantenuti su un mezzo tris-acetato-fosfato (TAP)22, 1,5% di agarosio a 20-25 °C. Qualsiasi ceppo mobile può essere utilizzato per questo protocollo. 1. Coltura cellul…

Representative Results

I tipici saggi di fototassi e risposta al fotoshock di C. reinhardtii sono mostrati qui. Dopo la stima della densità cellulare, la coltura cellulare wild-type (una progenie della croce CC-124 × CC-125 con agg1+ mt -)23 è stata lavata con una soluzione sperimentale di fotocomportamentare per il test della piastra di fototaxi. La sospensione cellulare è stata posta sotto una debole luce rossa per ~ 1 ora. Una sospensione cellulare da 2 ml è stata collocata in una capsula di Petri da 3,…

Discussion

Il presente protocollo è facile e non richiede molto tempo. Se si sospetta che un mutante di C. reinhardtii presenti difetti nella fotoricezione o nel moto ciliare, questo metodo potrebbe servire come analisi fenotipica primaria.

Tuttavia, esistono alcuni passaggi critici. Uno è quello di utilizzare le cellule nell’esperimento nella fase di crescita da iniziale a metà registro. Dopo aver coltivato per lunghi periodi, le cellule diventano meno mobili, meno sensibili alla luce e form…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Questo studio è stato supportato da sovvenzioni della Japan Society for the Promotion of Science KAKENHI (https://www.jsps.go.jp/english/index.html) a NU (19K23758, 21K06295), TH (16H06556) e KW (19H03242, 20K21420, 21H00420), dalla Ohsumi Frontier Science Foundation (https://www.ofsf.or.jp/en/) a KW, e dalla Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials (http://alliance.tagen.tohoku.ac.jp/english/) a NU, TH e KW.

Materials

15 mL conical tube SARSTEDT 62.554.502
5 mm Cannonball green LED Optosupply OSPG5161P
50 mL conical tube SARSTEDT 62.547.254
AC adaptor for the light box ATTO 2196161
Auto cell counter DeNovix CellDrop BF
CaCl2 Nakalai tesque 06731-05
Camera flash NEWWER TT560
Centrifuge KUBOTA 2800
Chlamydomonas strains CC-124 and CC-125 Chlamydomonas Resource Center https://www.chlamycollection.org/
C-mout CCD camera Wraymer 1129HMN1/3
Desktop darkroom Scientex B-S8
Digital still camera SONY RX100II
EGTA Dojindo G002
Fiji https://fiji.sc/
Green LED plate CCS ISLM-150X150-GG
HCl Fujifilm WAKO 080-01066
HEPES Dojindo GB70
KCl Nakalai tesque 238514-75
Lightbox (Flat viewer) ATTO 2196160
Microscope Olympus BX-53
Petri dish (φ3.5 cm) IWAKI 1000-035
Pottasium acetate Nakalai tesque 28434-25
Power supply for the green LED plate CCS ISC-201-2
Red filter Shibuya Optical S-RG630

References

  1. Demmig-Adams, B., Adams, W. W. Photoprotection and other responses of plants to high light stress. Annual Reviews Plant Physiology and Plant Molecular Biology. 43, 599-626 (1992).
  2. Wada, M. Chloroplast movement. Plant Science. 210, 177-182 (2013).
  3. Sgarbossa, A., Checcucci, G., Lenci, F. Photoreception and photomovements of microorganisms. Photochemical & Photobiological Sciences. 1 (7), 459-467 (2002).
  4. Ueki, N., et al. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America. 113 (19), 5299-5304 (2016).
  5. Foster, K. W., Smyth, R. D. Light antennas in phototactic algae. Microbiological Reviews. 44 (4), 572-630 (1980).
  6. Nagel, G., et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science. 296 (5577), 2395-2398 (2002).
  7. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America. 100 (24), 13940-13945 (2003).
  8. Sineshchekov, O. A., Jung, K. -. H., Spudich, J. L. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America. 99 (13), 8689-8694 (2002).
  9. Suzuki, T., et al. Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochemical and Biophysical Research Communications. 301 (3), 711-717 (2003).
  10. Berthold, P., et al. Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell. 20 (6), 1665-1677 (2008).
  11. Deisseroth, K., et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal of Neuroscience. 26 (41), 10380-10386 (2006).
  12. Wakabayashi, K., Isu, A., Ueki, N. Channelrhodopsin-dependent photo-behavioral responses in the unicellular green alga Chlamydomonas reinhardtii. Optogenetics (Advances in Experimental Medicine and Biology), 2nd ed. , 21-33 (2021).
  13. Rüffer, U., Nultsch, W. Flagellar photoresponses of Chlamydomonas cells held on micropipettes: II. Change in flagellar beat pattern. Cell Motility and the Cytoskeleton. 18 (4), 269-278 (1991).
  14. Kamiya, R., Hasegawa, E. Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. Experimental Cell Research. 173, 299-304 (1987).
  15. Kamiya, R., Witman, G. B. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. Journal of Cell Biology. 98 (1), 97-107 (1984).
  16. Okita, N., Isogai, N., Hirono, M., Kamiya, R., Yoshimura, K. Phototactic activity in Chlamydomonas ‘non-phototactic’ mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. Journal of Cell Science. 118, 529-537 (2005).
  17. Horst, C. J., Witman, G. B. ptx1, a nonphototactic mutant of Chlamydomonas, lacks control of flagellar dominance. Journal of Cell Biology. 120 (3), 733-741 (1993).
  18. Hyams, J. S., Borisy, G. G. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. Journal of Cell Science. 33, 235-253 (1978).
  19. Bessen, M., Fay, R. B., Witman, G. B. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. Journal of Cell Biology. 86 (2), 446-455 (1980).
  20. Reiter, J. F., Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nature Reviews Molecular Cell Biology. 18 (9), 533-547 (2017).
  21. Ide, T., et al. Identification of the agg1 mutation responsible for negative phototaxis in a "wild-type" strain of Chlamydomonas reinhardtii. Biochemistry and Biophysics Reports. 7, 379-385 (2016).
  22. Gorman, D. S., Levine, R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences of the United States of America. 54 (6), 1665-1669 (1965).
  23. Finst, R. J., Kim, P. J., Quarmby, L. M. Genetics of the deflagellation pathway in Chlamydomonas. 유전학. 149 (2), 927-936 (1998).
  24. Morel-Laurens, N. Calcium control of phototactic orientation in Chlamydomonas reinhardtii: sign and strength of response. Photochemistry and Photobiology. 45 (1), 119-128 (1987).
  25. Wakabayashi, K., King, S. M. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise. Journal of Cell Biology. 173 (5), 743-754 (2006).
  26. Wakabayashi, K., Misawa, Y., Mochiji, S., Kamiya, R. Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America. 108 (27), 11280-11284 (2011).
  27. Harris, E. H. . in The Chlamydomonas Sourcebook Second Edition. 1, 25-64 (2009).
  28. Mergenhagen, D. Circadian clock: genetic characterization of a short period mutant of Chlamydomonas reinhardii. European Journal of Cell Biology. 33 (1), 13-18 (1984).
  29. Ozasa, K., Lee, J., Song, S., Hara, M., Maeda, M. Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels. Lab on a Chip. 11 (11), 1933-1940 (2011).
  30. Tanno, A., et al. The four-celled Volvocales green alga Tetrabaena socialis exhibits weak photobehavior and high-photoprotection ability. PLoS One. 16 (10), 0259138 (2021).
  31. Ueno, Y., Aikawa, S., Kondo, A., Akimoto, S. Adaptation of light-harvesting functions of unicellular green algae to different light qualities. Photosynthesis Research. 139 (1-3), 145-154 (2019).
  32. Takahashi, T., Watanabe, M. Photosynthesis modulates the sign of phototaxis of wild-type Chlamydomonas reinhardtii. Effects of red background illumination and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea. FEBS Letters. 336 (3), 516-520 (1993).
  33. Morishita, J., Tokutsu, R., Minagawa, J., Hisabori, T., Wakabayashi, K. I. Characterization of Chlamydomonas reinhardtii mutants that exhibit strong positive phototaxis. Plants (Basel). 10 (7), (2021).
  34. Fujiu, K., Nakayama, Y., Yanagisawa, A., Sokabe, M., Yoshimura, K. Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion. Current Biology. 19 (2), 133-139 (2009).
  35. Inaba, K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia. 4 (1), 6 (2015).
check_url/kr/63961?article_type=t

Play Video

Cite This Article
Ueki, N., Isu, A., Kyuji, A., Asahina, Y., So, S., Takahashi, R., Hisabori, T., Wakabayashi, K. Observation of Photobehavior in Chlamydomonas reinhardtii. J. Vis. Exp. (183), e63961, doi:10.3791/63961 (2022).

View Video