Summary

研究细胞内囊泡破裂功能的光动力方法

Published: March 17, 2023
doi:

Summary

AlPcS2a介导的发色团辅助激光灭活(CALI)是研究活细胞中细胞内囊泡(IVs)时空损伤的强大工具。

Abstract

细胞内囊泡(IV)是通过囊泡内吞作用形成细胞质而形成的。IV形成通过IV膜的透化以及内体和溶酶体的形成参与激活各种信号通路。一种称为发色团辅助激光灭活(CALI)的方法用于研究IV的形成和控制IV调节的材料。CALI是一种基于成像的光动力方法,用于研究膜透化诱导的信号通路。该方法允许对所选细胞器进行时空操作以在细胞中透化。CALI方法已被应用于通过内体和溶酶体的透化来观察和监测特定分子。已知IV的膜破裂会选择性地募集聚糖结合蛋白,例如半乳糖凝集素-3。在这里,该协议描述了AlPcS2a 诱导IV破裂和使用半乳糖凝集素-3作为标记受损溶酶体的标记物,这对于研究IV膜破裂的下游效应及其在各种情况下的下游效应是有用的。

Introduction

内体是一种细胞内囊泡(IV),通过内吞作用形成,然后成熟为溶酶体。各种细胞内信号通路参与IV的形成;此外,不同的内在和外在刺激会损害静脉注射(例如,病原体在感染期间可以从边界膜逸出并进入细胞质1)。这通常伴有内吞囊泡破裂2。因此,靶向和破坏IV的技术可用于相关研究3

光动力疗法(PDT)是一种光依赖性疗法,通过杀死肿瘤或病原体来对抗疾病4。在PDT中,靶细胞用无毒发色团标记,称为光敏剂,可以通过光照明局部激活56。光敏剂从光中吸收能量并转化为激发的单重态,导致长寿命的激发三重态。三重态的光敏剂可以在氧气存在下发生电子或能量转移并形成活性氧(ROS),并且可以在空间上破坏照明区域内的标记细胞7。结果因光的力量而异8.通过控制光敏剂的浓度和光照明强度,可以在不进行细胞裂解的情况下选择性地灭活目标生物分子,称为发色团辅助光灭活(CALI)9。随着可以选择性标记各种亚细胞靶标的光敏剂的重大发展,CALI 已成为控制光介导的生物分子灭活的有价值的工具,用于小生物分子(如核苷酸和蛋白质)以及细胞器(如线粒体和内溶酶体310,111213)。

与CALI相比,化学或物理方法也用于损害膜,例如细菌毒素1415 和Leu-Leu-OMe16 治疗溶酶体损伤。然而,这些方法显示细胞内IV的大量损伤。在CALI中使用强大的光敏剂(即氯化酞菁二磺酸Al(III)(AlPcS2a));AlPcS2a通过内吞作用靶向溶酶体,用于在受控区域17中破裂内体或溶酶体。AlPcS2a 是一种细胞膜不可渗透的酞菁基发色团,与质膜上的脂质结合,通过内吞作用内化,最终通过内吞途径积聚在溶酶体内18。它吸收近红外光谱区域内的光并产生单线态氧,这是由激发的AlPcS2a18产生的主要ROS。单线态氧衰变迅速限制了其在细胞中微小区域(约10-20nm)内的扩散和反应距离19。通过调整AlPcS2a 孵育和光照的持续时间,允许对亚细胞区域内IV的损伤进行时空控制。因此,CALI成为检查静脉损伤后果以及静脉注射形成和调节的有力工具。

在这项研究中,解决了使用AlPcS 2a 作为光敏剂的CALI的特定方案。该方案可应用于各种类型的IV,包括内体和溶酶体,并用于检查膜破裂后的后续反应。表达溶酶体破裂后显示的荧光团缀合半乳糖凝集素-31620 的HeLa细胞用于证明该方案。

Protocol

1. AlPcS2a 原液制备 将 10 mg AlPcS2a 溶解在 400 μL 的 0.1 M NaOH 中。为了提高溶解度,将溶液加热到50°C并涡旋。 将溶液与 4 mL 磷酸盐缓冲盐水 (PBS) 混合。然后,用0.22μm过滤器过滤溶液以除去不溶性沉淀物。 通过紫外-可见分光光度计测量溶液的浓度。AlPcS2a在672 nm处的消光系数为4 x 104 cm-1 M-1。用PBS稀释AlPcS2a</su…

Representative Results

图中显示了AlPcS2a诱导的IV损伤,包括内体和溶酶体(图1)。 市售标记物可用于确定AlPcS2a 染色条件。例如,AlPcS2a 点和绿色荧光染料22 共定位(图2)。 荧光团标记的半乳糖凝集素-3可用作监测IV损伤的指示剂(图3)。此外,还可以跟踪Gal3点的位…

Discussion

AlPcS2a 与质膜结合,然后通过内吞作用内化并最终积聚在溶酶体中。因此,AlPcS 2a 可以通过调整孵育持续时间定位在亚细胞区室中。这种方法的局限性在于,只有 IV 亚群可以通过内吞作用被 AlPcS2a 标记,因为还有许多其他 IV 膜源,例如 ER 和高尔基体装置。此外,将AlPcS 2a 选择性标记到早期或晚期内体中具有挑战性,然而,荧光标记物可用于在亚细胞成像期间区分…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者希望感谢中央研究院炎症核心设施IBMS的研究支持。核心设施由中央研究院核心设施和创新仪器项目(AS-CFII-111-213)资助。作者感谢中央研究院生物医学科学研究所(IBMS)的通用设备核心设施协助图像采集。

Materials

Reagent
Al(III) Phthalocyanine Chloride Disulfonic acid (AlPcS2a) Frontier Scientific P40632
Culture dish ibidi 812128-200
Culture Medium DMEM supplemented with 10% FBS and 100 U/mL penicillin G and 100 mg/mL Streptomycin
DMEM Gibco 11965092
FBS Thermo Fisher Scientific A4736301
Gal3-GFP plasmid addgene
Lipofectamine 3000 kit Thermo Fisher Scientific L3000008
LysoTracker Green DND-26 Thermo Fisher Scientific L7526 green fluorescent dye
Multiwall plate perkinelmer PK-6005550
NaOH Thermo Fisher Scientific Q15895
OptiMEM Thermo Fisher Scientific 31985070
Penicillin-streptomycin Gibco 15140163
Phosphate-Buffered Saline (PBS) Gibco 21600-069 137 mM NaCl, 2.7 mM KCl, 10mM Na2HPO4, 1.8 mM KH2PO4
Cell line
HeLa Cell Line ATCC CCL-2 The methods are applicable for most of the attached cell lines. Conditions must be determined individually.
Equipments
0.22 µm Filter Merck SLGV013SL
Collimated LED Light  (660nm) Thorlabs M660L3-C1 and DC2100 Near-infared light is ideal base on the excitation spectrum of AlPcS2a.
Confocal microscopy Carl Zeiss LSM 780 An incubation system is required for long-term imaging.
NanoDrop 2000/2000c Spectrophotometers Thermo Fisher Scientific
Red LED light Tholabs M660L4-C1

References

  1. Cossart, P., Helenius, A. Endocytosis of viruses and bacteria. Cold Spring Harbor Perspectives in Biology. 6 (8), 016972 (2014).
  2. Daussy, C. F., Wodrich, H. 34;Repair me if you can": membrane damage, response, and control from the viral perspective. Cells. 9 (9), 2042 (2020).
  3. Hung, Y. H., Chen, L. M., Yang, J. Y., Yang, W. Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nature Communications. 4, 2111 (2013).
  4. Sharma, S. K., et al. Photodynamic therapy for cancer and for infections: what is the difference. Israel Journal of Chemistry. 52 (8-9), 691-705 (2012).
  5. Kübler, A. C. Photodynamic therapy. Medical Laser Application. 20 (1), 37-45 (2005).
  6. De Rosa, F. S., Bentley, M. V. Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharmaceutical Research. 17 (12), 1447-1455 (2000).
  7. Hamblin, M. R. New photosensitizers for photodynamic therapy. Biochemical Journal. 473 (4), 347-364 (2016).
  8. Lavie, G., et al. A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: possible relevance to photodynamic therapy. British Journal of Cancer. 79 (3-4), 423-432 (1999).
  9. Jay, D. G. Selective destruction of protein function by chromophore-assisted laser inactivation. Proceedings of the National Academy of Sciences. 85 (15), 5454-5458 (1988).
  10. Grate, D., Wilson, C. Laser-mediated, site-specific inactivation of RNA transcripts. Proceedings of the National Academy of Sciences. 96 (11), 6131-6136 (1999).
  11. Lin, J. Y., et al. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron. 79 (2), 241-253 (2013).
  12. Hsieh, C. W., Yang, W. Y. Triggering mitophagy with photosensitizers. Methods in Molecular Biology. 1880, 611-619 (2019).
  13. Yang, J. Y., Yang, W. Y. Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy. 7 (10), 1230-1238 (2011).
  14. Molinari, M., et al. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. Journal of Biological Chemistry. 272 (40), 25339-25344 (1997).
  15. Prince, L. R., et al. Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin. Journal of Immunology. 180 (5), 3502-3511 (2008).
  16. Aits, S., et al. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy. 11 (8), 1408-1424 (2015).
  17. Prasmickaite, L., Hogset, A., Berg, K. Evaluation of different photosensitizers for use in photochemical gene transfection. Photochemistry and Photobiology. 73 (4), 388-395 (2001).
  18. Berg, K., et al. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. 암 연구학. 59 (6), 1180-1183 (1999).
  19. Moan, J., Berg, K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochemistry and Photobiology. 53 (4), 549-553 (1991).
  20. Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A., Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 482 (7385), 414-418 (2012).
  21. Repnik, U., et al. L-leucyl-L-leucine methyl ester does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes. Journal of Cell Science. 130 (18), 3124-3140 (2017).
  22. Griffiths, G., Hoflack, B., Simons, K., Mellman, I., Kornfeld, S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 52 (3), 329-341 (1988).
  23. Jia, J., et al. Galectin-3 Coordinates a cellular system for lysosomal repair and removal. Developmental Cell. 52 (1), 69-87 (2020).
  24. Chu, Y. P., Hung, Y. H., Chang, H. Y., Yang, W. Y. Assays to monitor lysophagy. Methods in Enzymology. 588, 231-244 (2017).
  25. Nguyen, L., Madsen, S. J., Berg, K., Hirschberg, H. An improved in vitro photochemical internalization protocol for 3D spheroid cultures. Lasers in Medical Science. 36 (8), 1567-1571 (2021).
  26. Daugelaviciene, N., et al. Lysosome-targeted photodynamic treatment induces primary keratinocyte differentiation. Journal of Photochemistry and Photobiology. B, Biology. 218, 112183 (2021).
  27. Hong, M. H., et al. Intracellular galectins control cellular responses commensurate with cell surface carbohydrate composition. Glycobiology. 30 (1), 49-57 (2019).

Play Video

Cite This Article
Hung, Y., Wang, H., Wang, J., Hsu, C., Chen, H. A Photodynamic Approach to Study Function of Intracellular Vesicle Rupture. J. Vis. Exp. (193), e63962, doi:10.3791/63962 (2023).

View Video