Summary

Intestinal epitelregenerering som reaktion på ioniserende bestråling

Published: July 27, 2022
doi:

Summary

Mave-tarmkanalen er et af de mest følsomme organer for skade ved stråleterapeutiske kræftbehandlinger. Det er samtidig et organsystem med en af de højeste regenerative kapaciteter efter sådanne fornærmelser. Den præsenterede protokol beskriver en effektiv metode til at studere tarmepithelets regenerative kapacitet.

Abstract

Tarmepitelet består af et enkelt lag af celler, men indeholder flere typer terminalt differentierede celler, som genereres ved aktiv spredning af intestinale stamceller placeret i bunden af tarmkrypter. Under tilfælde af akut tarmskade gennemgår disse aktive tarmstamceller imidlertid celledød. Gammabestråling er en meget anvendt kolorektal cancerbehandling, som, selvom den er terapeutisk effektiv, har den bivirkning, at den nedbryder den aktive stamcellepulje. Faktisk oplever patienter ofte gastrointestinalt strålingssyndrom, mens de gennemgår strålebehandling, delvis på grund af aktiv stamcelleudtømning. Tabet af aktive tarmstamceller i tarmkrypter aktiverer en pulje af typisk hvilende reserve intestinale stamceller og inducerer dedifferentiering af sekretoriske og enterocytprecursorceller. Hvis ikke for disse celler, ville tarmepitelet mangle evnen til at komme sig efter strålebehandling og andre sådanne store vævsfornærmelser. Nye fremskridt inden for afstamningssporingsteknologier muliggør sporing af aktivering, differentiering og migration af celler under regenerering og er med succes blevet anvendt til at studere dette i tarmen. Denne undersøgelse har til formål at skildre en metode til analyse af celler i musens tarmepitel efter strålingsskade.

Introduction

Det menneskelige tarmepitel ville dække omtrent overfladen af en halv badmintonbane, hvis den blev placeret helt fladt1. I stedet komprimeres dette enkelt cellelag, der adskiller mennesker fra indholdet af deres tarme, til en række fingerlignende fremspring, villi og fordybninger, krypter, der maksimerer tarmens overfladeareal. Cellerne i epitelet differentierer langs en krypt-villusakse. Villus består primært af næringsstofabsorberende enterocytter, slimudskillende bægerceller og de hormonproducerende enteroendokrine celler, mens krypterne primært består af defensinproducerende Paneth-celler, aktive og reservestamceller og stamceller 2,3,4,5. Desuden genererer den tovejskommunikation, disse celler har med stromale og immunceller i det underliggende mesenkymale rum og lumens mikrobiota, et komplekst netværk af interaktioner, der opretholder tarmhomeostase og er afgørende for genopretning efter skade 6,7,8.

Tarmepitelet er det hurtigst selvfornyende væv i menneskekroppen med en omsætningshastighed på 2-6 dage 9,10,11. Under homeostase deler aktive stamceller i bunden af tarmkrypter (kryptbasesøjleceller), der er kendetegnet ved ekspressionen af leucinrige gentagne holdige G-proteinkoblede receptor 5 (LGR5), hurtigt og tilvejebringer stamceller, der adskiller sig i alle andre intestinale epitellinjer. På grund af deres høje mitotiske hastighed er aktive stamceller og deres umiddelbare forfædre imidlertid særligt følsomme over for gammastrålingsskader og gennemgår apoptose efter bestråling 5,12,13,14. Efter deres tab gennemgår reservestamceller og ikke-stamceller (subpopulation af forfædre og nogle terminalt differentierede celler) i tarmkrypter aktivering og genopfylder basalkryptrummet, som derefter kan rekonstituere cellepopulationer af villi og dermed regenerere tarmepitelet15. Ved hjælp af afstamningssporingsteknikker har flere forskergrupper vist, at reservestamceller (hvilende) er i stand til at understøtte regenerering ved tab af aktive stamceller 13,16,17,18,19,20,21,22. Disse celler er karakteriseret ved tilstedeværelsen af polycomb kompleks protein 1 onkogen (Bmi1), mus telomerase revers transkriptase gen (mTert), Hop homeobox (Hopx) og leucin-rige gentage protein 1 gen (Lrig1). Derudover har det vist sig, at ikke-stamceller er i stand til at genopbygge tarmkrypter ved skade 23,24,25,26,27,28,29,30,31. Det har især vist sig, at forfædre til sekretoriske celler og enterocytter gennemgår dedifferentiering ved skade, vender tilbage til stamlignende celler og understøtter regenerering af tarmepitelet. Nylige undersøgelser har identificeret celler, der udtrykker flere markører, der har kapacitet til at erhverve stammelignende egenskaber ved skade (såsom DLL+, ATOH1+, PROX1+, MIST1+, DCLK1+)32,33,34,35,36. Overraskende viste Yu et al., at selv modne Paneth-celler (LYZ +) kan bidrage til intestinal regenerering37. Ud over at forårsage apoptose af intestinale epitelceller og forstyrre epitelbarrierefunktionen resulterer bestråling desuden i dysbiose af tarmfloraen, immuncelleaktivering og initiering af et proinflammatorisk respons samt aktivering af mesenkymale og stromale celler38,39.

Gammastråling er et værdifuldt terapeutisk værktøj i kræftbehandling, især for kolorektal tumorer40. Bestråling påvirker imidlertid signifikant intestinal homeostase ved at fremkalde skade på cellerne, hvilket fører til apoptose. Strålingseksponering forårsager flere forstyrrelser, der bremser patientens opsving og er præget af slimhindeskade og betændelse i den akutte fase og diarré, inkontinens, blødning og mavesmerter på lang sigt. Denne panoply af manifestationer kaldes gastrointestinal strålingstoksicitet. Derudover kan strålingsinduceret progression af transmural fibrose og/eller vaskulær sklerose først manifestere sig år efter behandlingen38,41. Samtidig med selve skaden inducerer stråling et reparationsrespons i tarmceller, der aktiverer signalveje, der er ansvarlige for at initiere og orkestrere regenerering42. Strålingsinduceret tyndtarmssygdom kan stamme fra bækken- eller abdominal strålebehandling, der leveres til andre organer (såsom livmoderhalsen, prostata, bugspytkirtel, endetarm)41,43,44,45,46. Tarmbestrålingsskader er således et væsentligt klinisk problem, og en bedre forståelse af den resulterende patofysiologi vil sandsynligvis fremme udviklingen af interventioner til lindring af gastrointestinale komplikationer forbundet med strålebehandling. Der er andre teknikker, der gør det muligt at undersøge det regenerative formål med tarmepitelet bortset fra stråling. Transgene og kemiske murinmodeller til undersøgelse af inflammation og regenerering derefter er blevet udviklet47. Dextran natriumsulfat (DSS) inducerer betændelse i tarmen og fører til udvikling af egenskaber svarende til inflammatoriske tarmsygdomme48. En kombination af DSS-behandling med den pro-kræftfremkaldende forbindelse azoxymethan (AOM) kan resultere i udvikling af colitis-associeret cancer48,49. Iskæmi reperfusionsinduceret skade er en anden metode, der anvendes til at studere det regenerative potentiale i tarmepitelet. Denne teknik kræver erfaring og kirurgisk viden50. Desuden forårsager ovennævnte teknikker andre typer skader end stråling og kan føre til involvering af forskellige regenereringsmekanismer. Derudover er disse modeller tidskrævende, mens strålingsteknikken er ret kort. For nylig er in vitro-metoder, der anvender enteroider og colonoider genereret fra tarm og tyktarm, blevet anvendt i kombination med strålingsskade til at studere mekanismerne for intestinal regenerering51,52. Disse teknikker rekapitulerer imidlertid ikke fuldt ud det organ, de modellerer53,54.

Den fremlagte protokol indeholder beskrivelsen af en murinmodel af gammastrålingsskade i kombination med en genetisk model, der efter tamoxifenbehandling muliggør sporing af slægter, der stammer fra reservestamcellepopulationen (Bmi1-CreER; Rosa26eYFP). Denne model anvender en 12 Gy totalkropsbestråling, som inducerer signifikant nok tarmskade til at aktivere reservestamceller, mens den stadig giver mulighed for efterfølgende undersøgelse af tarmregenerativ kapacitet inden for 7 dage efter skade55.

Protocol

Alle mus blev anbragt i Division of Laboratory Animal Resources (DLAR) ved Stony Brook University. Stony Brook University Institutional Animal Care and Use Committee (IACUC) godkendte alle undersøgelser og procedurer, der involverede dyreforsøgspersoner. Forsøg med dyr blev udført i nøje overensstemmelse med den godkendte dyrehåndteringsprotokol (IACUC # 245094). BEMÆRK: Musstammer B6;129-Bmi1 tm1(cre/ERT)Mrc/J (Bmi1-Cre ER) og B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J (<…

Representative Results

Anvendelsen af 12 Gy totalkropsbestråling (TBI) i kombination med sporing af murin genetisk afstamning muliggør en grundig analyse af konsekvenserne af strålingsskader i tarmen. For at starte, Bmi1-CreER; Rosa26eYFP-mus modtog en enkelt tamoxifeninjektion, som inducerer forbedret gult fluorescerende protein (EYFP) ekspression inden for en Bmi1+ reservestamcellepopulation. To dage efter tamoxifeninjektionen gennemgik musene bestråling eller skinbestråling. Tre timer før euta…

Discussion

Denne protokol beskriver en robust og reproducerbar strålingsskademodel. Det giver mulighed for præcis analyse af ændringerne i tarmepitelet i løbet af 7 dage efter skaden. Det er vigtigt, at de valgte tidspunkter afspejler afgørende stadier af skade og er kendetegnet ved tydelige ændringer i tarmen (skade, apoptose, regenerering og normaliseringsfaser)60. Denne bestrålingsmodel er blevet fastlagt og omhyggeligt vurderet, hvilket viser en passende manifestation af efterligningsskade som den…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne ønsker at anerkende Stony Brook Cancer Center Histology Research Core for eksperthjælp med forberedelse af vævsprøver og Division of Laboratory Animal Resources ved Stony Brook University for hjælp til dyrepleje og håndtering. Dette arbejde blev støttet af tilskud fra National Institutes of Health DK124342 tildelt Agnieszka B. Bialkowska og DK052230 til Dr. Vincent W. Yang.

Materials

1 mL syringe BD 309659
16G Reusable Small Animal Feeding Needles: Straight VWR 20068-630
27G x 1/2" needle BD 305109
28G x 1/2" Monoject 1mL insulin syringe Covidien 1188128012
5-Ethynyl-2′-deoxyuridine (EdU) Santa Cruz Biotechnology sc284628A 10 mg/mL in sterile DMSO:water (1:4 v/v), aliquot and store in -20°C
Azer Scientific 10% Neutral Buffered Formalin Fisher Scientific 22-026-213
B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J The Jackson Laboratory Strain #:006148
B6;129-Bmi1tm1(cre/ERT)Mrc/J The Jackson Laboratory Strain #:010531
Bovine Serum Albumin Fraction V, heat shock Millipore-Sigma 3116956001
Chicken anti-GFP Aves GFP-1020
Click-IT plus EdU Alexa Fluor 555 imaging kit, Invitrogen Thermo Fisher Scientific C10638
Corn oil Millipore-Sigma C8267
Decloaking Chamber Biocare Medical DC2012
Dimethyl sulfoxide (DMSO) Fisher BioReagents BP231-100 light sensitive
DNase-free proteinase K Invitrogen C10618H diluted 25x in DPBS
Donkey anti-chicken AF647 Jackson ImmunoResearch 703-605-155
DPBS Fisher Scientific 21-031-CV
Eosin Fisher Scientific S176
Fluorescence Microscope Nikon Eclipse 90i Bright and fluoerescent light, with objectives: 10X, 20X Nikon
Fluoromount Aqueous Mounting Medium Millipore-Sigma F4680-25ML
Gamma Cell 40 Exactor Best Theratronics Ltd. 0.759 Gy min-1
Goat anti-rabbit AF488 Jackson ImmunoResearch 111-545-144
Hematoxylin Solution, Gill No. 3 Millipore-Sigma GHS332
HM 325 Rotary Microtome from Thermo Scientific Fisher Scientific 23-900-668
Hoechst 33258, Pentahydrate (bis-Benzimide) Thermo Fisher Scientific H3569 dilution 1:1000
Hydrogen Peroxide Solution, ACS, 29-32%, Spectrum Chemical Fisher Scientific 18-603-252
In Situ Cell Death Detection Kit, Fluorescein (Roche) Millipore-Sigma 11684795910
Liquid Blocker Super PAP PEN, Mini Fisher Scientific DAI-PAP-S-M
Lithium Carbonate (Powder/Certified ACS), Fisher Chemical Fisher Scientific L119-500 0.5g/1L dH2O
Luer-Lok Syringe sterile, single use, 10 mL VWR 89215-218
Methanol VWR BDH1135-4LP
Pharmco Products Ethyl alcohol, 200 PROOF Fisher Scientific NC1675398
Pharmco-Aaper 281000ACSCSLT Acetic Acid ACS Grade Capitol Scientific AAP-281000ACSCSLT
Rabbit anti-Ki67 BioCare Medical CRM325
Richard-Allan Scientific Cytoseal XYL Mounting Medium Fisher Scientific 22-050-262
Scientific Industries Incubator-Genie for baking slides at 65 degree Fisher Scientific 50-728-103
Sodium Citrate Dihydrate Fisher Scientific S279-500
Stainless Steel Dissecting Kit VWR 25640-002
Superfrost Plus micro slides [size: 25 x 75 x 1 mm] VWR  48311-703
Tamoxifen Millipore-Sigma T5648 30 mg/mL in sterile corn oil, preferably fresh or short-sterm storage in -20°C, light sensitive
Tissue-Tek 24-Slide Holders with Detachable Handle Sakura 4465
Tissue-Tek Accu-Edge Low Profile Blades Sakura 4689
Tissue-Tek Manual Slide Staining Set Sakura 4451
Tissue-Tek Staining Dish, Green with Lid Sakura 4456
Tissue-Tek Staining Dish, White with Lid Sakura 4457
Tween 20 Millipore-Sigma P7949
Unisette Processing Cassettes VWR 87002-292
VWR Micro Cover Glasses VWR 48393-081
Xylene Fisher Scientific X5P-1GAL

References

  1. Helander, H. F., Fandriks, L. Surface area of the digestive tract – Revisited. Scandinavian Journal of Gastroenterology. 49 (6), 681-689 (2014).
  2. vander Flier, L. G., Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annual Review of Physiology. 71, 241-260 (2009).
  3. Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell. 154 (2), 274-284 (2013).
  4. Barker, N., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 449 (7165), 1003-1007 (2007).
  5. Yan, K. S., et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proceedings of the National Academy of Sciences of the United States of America. 109 (2), 466-471 (2012).
  6. Liao, Z., Hu, C., Gao, Y. Mechanisms modulating the activities of intestinal stem cells upon radiation or chemical agent exposure. Journal of Radiation Research. 63 (2), 149-157 (2022).
  7. Meyer, A. R., Brown, M. E., McGrath, P. S., Dempsey, P. J. Injury-Induced Cellular Plasticity Drives Intestinal Regeneration. Cellular and Molecular Gastroenterology and Hepatology. 13 (3), 843-856 (2022).
  8. Owens, B. M., Simmons, A. Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunology. 6 (2), 224-234 (2013).
  9. Barker, N. Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nature Reviews Molecular Cell Biology. 15 (1), 19-33 (2014).
  10. Cheng, H., Origin Leblond, C. P. differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. The American Journal of Anatomy. 141 (4), 537-561 (1974).
  11. Sender, R., Milo, R. The distribution of cellular turnover in the human body. Nature Medicine. 27 (1), 45-48 (2021).
  12. Metcalfe, C., Kljavin, N. M., Ybarra, R., de Sauvage, F. J. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 14 (2), 149-159 (2014).
  13. Tian, H., et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 478 (7368), 255-259 (2011).
  14. Tirado, F. R., et al. Radiation-induced toxicity in rectal epithelial stem cell contributes to acute radiation injury in rectum. Stem Cell Research & Therapy. 12 (1), 63 (2021).
  15. Tetteh, P. W., Farin, H. F., Clevers, H. Plasticity within stem cell hierarchies in mammalian epithelia. Trends in Cell Biology. 25 (2), 100-108 (2015).
  16. Breault, D. T., et al. Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. 105 (30), 10420-10425 (2008).
  17. Montgomery, R. K., et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proceedings of the National Academy of Sciences of the United States of America. 108 (1), 179-184 (2011).
  18. Orzechowska, E. J., Katano, T., Bialkowska, A. B., Yang, V. W. Interplay among p21(Waf1/Cip1), MUSASHI-1 and Kruppel-like factor 4 in activation of Bmi1-Cre(ER) reserve intestinal stem cells after gamma radiation-induced injury. Scientific Reports. 10 (1), 18300 (2020).
  19. Takeda, N., et al. Interconversion between intestinal stem cell populations in distinct niches. Science. 334 (6061), 1420-1424 (2011).
  20. Wong, V. W., et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biology. 14 (4), 401-408 (2012).
  21. Powell, A. E., et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 149 (1), 146-158 (2012).
  22. Ayyaz, A., et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature. 569 (7754), 121-125 (2019).
  23. Tomic, G., et al. Phospho-regulation of ATOH1 is required for plasticity of secretory progenitors and tissue regeneration. Cell Stem Cell. 23 (3), 436-443 (2018).
  24. Castillo-Azofeifa, D., et al. Atoh1(+) secretory progenitors possess renewal capacity independent of Lgr5(+) cells during colonic regeneration. The EMBO Journal. 38 (4), 99984 (2019).
  25. Van Landeghem, L., et al. Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation. American Journal of Physiology-Gastrointestinal and Liver Physiology. 302 (10), 1111-1132 (2012).
  26. Roche, K. C., et al. SOX9 maintains reserve stem cells and preserves radioresistance in mouse small intestine. Gastroenterology. 149 (6), 1553-1563 (2015).
  27. Barriga, F. M., et al. Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell Stem Cell. 20 (6), 801-816 (2017).
  28. May, R., et al. Brief report: Dclk1 deletion in tuft cells results in impaired epithelial repair after radiation injury. Stem Cells. 32 (3), 822-827 (2014).
  29. Tetteh, P. W., et al. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell. 18 (2), 203-213 (2016).
  30. Bohin, N., et al. Rapid crypt cell remodeling regenerates the intestinal stem cell niche after Notch inhibition. Stem Cell Reports. 15 (1), 156-170 (2020).
  31. Li, N., et al. Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Reports. 3 (5), 876-891 (2014).
  32. van Es, J. H., et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biology. 14 (10), 1099-1104 (2012).
  33. Durand, A., et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proceedings of the National Academy of Sciences of the United States of America. 109 (23), 8965-8970 (2012).
  34. Hayakawa, Y., et al. BHLHA15-positive secretory precursor cells can give rise to tumors in intestine and colon in mice. Gastroenterology. 156 (4), 1066-1081 (2019).
  35. Yan, K. S., et al. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell. 21 (1), 78-90 (2017).
  36. Chandrakesan, P., et al. Intestinal tuft cells regulate the ATM mediated DNA damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury. Scientific Reports. 6, 37667 (2016).
  37. Yu, S., et al. Paneth cell multipotency induced by Notch activation following Injury. Cell Stem Cell. 23 (1), 46-59 (2018).
  38. Moussa, L., et al. Bowel radiation injury: Complexity of the pathophysiology and promises of cell and tissue engineering. Cell Transplantation. 25 (10), 1723-1746 (2016).
  39. Gong, W., et al. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death & Disease. 7 (9), 2387 (2016).
  40. Tam, S. Y., Wu, V. W. C. A review on the special radiotherapy techniques of colorectal cancer. Frontiers in Oncology. 9, 208 (2019).
  41. Shadad, A. K., Sullivan, F. J., Martin, J. D., Egan, L. J. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World Journal of Gastroenterology. 19 (2), 185-198 (2013).
  42. Serrano Martinez, P., Giuranno, L., Vooijs, M., Coppes, R. P. The radiation-induced regenerative response of adult tissue-specific stem cells: Models and signaling pathways. Cancers. 13 (4), 855 (2021).
  43. Stacey, R., Green, J. T. Radiation-induced small bowel disease: Latest developments and clinical guidance. Therapeutic Advances in Chronic Disease. 5 (1), 15-29 (2014).
  44. Pan, Y. B., Maeda, Y., Wilson, A., Glynne-Jones, R., Vaizey, C. J. Late gastrointestinal toxicity after radiotherapy for anal cancer: A systematic literature review. Acta Oncologica. 57 (11), 1427-1437 (2018).
  45. Elhammali, A., et al. Late gastrointestinal tissue effects after hypofractionated radiation therapy of the pancreas. Radiation Oncology. 10, 186 (2015).
  46. You, S. H., Cho, M. Y., Sohn, J. H., Lee, C. G. Pancreatic radiation effect in apoptosis-related rectal radiation toxicity. Journal of Radiation Research. 59 (5), 529-540 (2018).
  47. Jiminez, J. A., Uwiera, T. C., Douglas Inglis, G., Uwiera, R. R. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathogens. 7, 29 (2015).
  48. Snider, A. J., et al. Murine model for colitis-associated cancer of the colon. Methods in Molecular Biology. 1438, 245-254 (2016).
  49. Clapper, M. L., Cooper, H. S., Chang, W. C. Dextran sulfate sodium-induced colitis-associated neoplasia: A promising model for the development of chemopreventive interventions. Acta Pharmacologica Sinica. 28 (9), 1450-1459 (2007).
  50. Gonzalez, L. M., Moeser, A. J., Blikslager, A. T. Animal models of ischemia-reperfusion-induced intestinal injury: Progress and promise for translational research. American Journal of Physiology-Gastrointestinal and Liver Physiology. 308 (2), 63-75 (2015).
  51. Fujimichi, Y., Otsuka, K., Tomita, M., Iwasaki, T. Ionizing radiation alters organoid forming potential and replenishment rate in a dose/dose-rate dependent manner. Journal of Radiation Research. 63 (2), 166-173 (2022).
  52. Montenegro-Miranda, P. S., et al. A novel organoid model of damage and repair identifies HNF4alpha as a critical regulator of intestinal epithelial regeneration. Cellular and Molecular Gastroenterology and Hepatology. 10 (2), 209-223 (2020).
  53. Nagle, P. W., Coppes, R. P. Current and future perspectives of the use of organoids in radiobiology. Cells. 9 (12), 2649 (2020).
  54. Taelman, J., Diaz, M., Guiu, J. Human Intestinal Organoids: Promise and Challenge. Frontiers in Cell and Developmental Biology. 10, 854740 (2022).
  55. Kim, C. K., Yang, V. W., Bialkowska, A. B. The role of intestinal stem cells in epithelial regeneration following radiation-induced gut injury. Current Stem Cell Reports. 3 (4), 320-332 (2017).
  56. Kuruvilla, J. G., et al. Kruppel-like factor 4 modulates development of BMI1(+) intestinal stem cell-derived lineage following gamma-radiation-induced gut injury in mice. Stem Cell Reports. 6 (6), 815-824 (2016).
  57. Sangiorgi, E., Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics. 40 (7), 915-920 (2008).
  58. Srinivas, S., et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Developmental Biology. 1, 4 (2001).
  59. Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O., Yang, V. W. Improved swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. Journal of Visualized Experiments. (113), e54161 (2016).
  60. Booth, C., Tudor, G., Tudor, J., Katz, B. P., MacVittie, T. J. Acute gastrointestinal syndrome in high-dose irradiated mice. Health Physics. 103 (4), 383-399 (2012).
  61. Lu, L., Jiang, M., Zhu, C., He, J., Fan, S. Amelioration of whole abdominal irradiation-induced intestinal injury in mice with 3,3′-Diindolylmethane (DIM). Free Radical Biology & Medicine. 130, 244-255 (2019).
  62. Karlsson, J. A., Andersen, B. L. Radiation therapy and psychological distress in gynecologic oncology patients: Outcomes and recommendations for enhancing adjustment. Journal of Psychosomatic Obstetrics & Gynecology. 5 (4), 283-294 (1986).
  63. Yang, J., Cai, H., Xiao, Z. X., Wang, H., Yang, P. Effect of radiotherapy on the survival of cervical cancer patients: An analysis based on SEER database. 의학. 98 (30), 16421 (2019).
  64. Giroux, V., et al. Mouse intestinal Krt15+ crypt cells are radio-resistant and tumor initiating. Stem Cell Reports. 10 (6), 1947-1958 (2018).
  65. Kim, C. K., et al. Kruppel-like factor 5 regulates stemness, lineage specification, and regeneration of intestinal epithelial stem cells. Cellular and Molecular Gastroenterology and Hepatology. 9 (4), 587-609 (2020).
  66. Sheng, X., et al. Cycling stem cells are radioresistant and regenerate the intestine. Cell Reports. 32 (4), 107952 (2020).
  67. Gross, S., et al. Nkx2.2 is expressed in a subset of enteroendocrine cells with expanded lineage potential. American Journal of Physiology-Gastrointestinal and Liver Physiology. 309 (12), 975-987 (2015).
  68. Sato, T., et al. Characterization of radioresistant epithelial stem cell heterogeneity in the damaged mouse intestine. Scientific Reports. 10 (1), 8308 (2020).
  69. Roth, S., et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS One. 7 (6), 38965 (2012).
  70. Bohin, N., et al. Insulin-like growth factor-1 and mTORC1 signaling promote the intestinal regenerative response after irradiation injury. Cellular and Molecular Gastroenterology and Hepatology. 10 (4), 797-810 (2020).
  71. Romesser, P. B., et al. Preclinical murine platform to evaluate therapeutic countermeasures against radiation-induced gastrointestinal syndrome. Proceedings of the National Academy of Sciences of the United States of America. 116 (41), 20672-20678 (2019).
  72. Gu, J., et al. At what dose can total body and whole abdominal irradiation cause lethal intestinal injury among C57BL/6J mice. Dose Response. 18 (3), 1559325820956783 (2020).
  73. Huh, W. J., et al. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology. 142 (1), 21-24 (2012).
  74. Keeley, T. M., Horita, N., Samuelson, L. C. Tamoxifen-induced gastric injury: Effects of dose and method of administration. Cellular and Molecular Gastroenterology and Hepatology. 8 (3), 365-367 (2019).
  75. Bohin, N., Carlson, E. A., Samuelson, L. C. Genome toxicity and impaired stem cell function after conditional activation of CreER(T2) in the intestine. Stem Cell Reports. 11 (6), 1337-1346 (2018).
  76. Boynton, F. D. D., Ericsson, A. C., Uchihashi, M., Dunbar, M. L., Wilkinson, J. E. Doxycycline induces dysbiosis in female C57BL/6NCrl mice. BMC Research Notes. 10 (1), 644 (2017).
check_url/kr/64028?article_type=t

Play Video

Cite This Article
Orzechowska-Licari, E. J., LaComb, J. F., Giarrizzo, M., Yang, V. W., Bialkowska, A. B. Intestinal Epithelial Regeneration in Response to Ionizing Irradiation. J. Vis. Exp. (185), e64028, doi:10.3791/64028 (2022).

View Video