Summary

通过二级粘附法从大鼠骨骼中分离单核细胞 - 巨噬细胞谱系细胞

Published: July 13, 2022
doi:

Summary

在这里,我们提出了一种从SD大鼠中分离BMM的方案,称为二次依从性方法。

Abstract

随着骨矿物质密度的降低,骨骼更容易骨折,从而对患者的生活质量产生负面影响。骨骼的生长发育主要由成骨细胞和破骨细胞调节。人们普遍认为破骨细胞来源于骨髓单核细胞-巨噬细胞(BMM)。BMM和其他造血干细胞位于骨髓腔内。因此,从不同和异质细胞群中分离单个稳定的BMM是一个巨大的挑战。在这里,我们提出了一种从SD大鼠中分离BMM的方案,称为二次依从性方法。收集在原代培养物中培养24-48小时的贴壁细胞。流式细胞术分析显示,约37.94%的细胞为CD11b/c+(单核细胞-巨噬细胞表面抗原)。酒石酸盐耐酸磷酸酶(TRAP)染色和蛋白质印迹分析表明,BBM 可以在体外分化为破骨细胞。上述结果表明,二级依从性细胞可被视为破骨细胞分化研究的合适细胞模型。

Introduction

据报道,存在于骨髓中的单核细胞-巨噬细胞系细胞可以分化成血液中的单核细胞和组织巨噬细胞12。上述细胞,其可分化成破骨细胞以平衡骨骼生长和发育,通常用作细胞模型以诱导体内破骨细胞34。骨髓是一种含有几种不同类型细胞的特殊组织,其包括但不限于骨髓间充质干细胞、骨髓单核巨噬细胞(BMM)、造血干细胞、内皮细胞和免疫细胞。事实上,之前的几项研究表明,从长骨的骨髓腔中冲出的贴壁细胞可以分化成成成骨细胞,破骨细胞,软骨细胞或脂肪细胞5678。虽然已经使用了不同的分离和培养方法来产生不同的均质细胞群,但在从各种不同的细胞类型中分离和培养BMM仍然存在很大的挑战。

已经开发了几种方法来提取骨髓单核巨噬细胞(BMSC)。然而,这些方法中的大多数都是复杂的91011。例如,密度梯度离心需要专门的试剂盒,操作既耗时又繁琐。该方法适用于从高容量血液样本中分离出BMM,但不适用于从骨髓样本91213中分离。此外,使用胶原酶消化提取组织样品是一个复杂且耗时的过程;该方法不推荐用于从骨髓样本1415中分离BMM。此外,尽管流动分离可以导致高度纯化的单核细胞/巨噬细胞群,但它需要非常大的样品量和高仪器设备要求1016。此外,微珠富集法极其昂贵,并且在一般实验室17中是不可行的。

因此,在目前的研究中,提出了一种方便,快速,廉价的方法,用于从骨髓中分离单核巨噬细胞。使用不同时间点粘附的骨髓细胞通过二次粘附方法分离BMM。上述方法提取的BMM可以在 体外诱导破骨细胞的形成,从而为今后的 体外骨质疏松症研究提供简单方便的细胞模型。

Protocol

本研究的所有实验均按照浙江医科大学实验动物研究中心的动物实验指南(批准号:IACUC-20181029-11)进行。 1. 细胞提取 将Sprague-Dawley大鼠(SD大鼠,1-10天大,雄性或雌性)放入装有CO2 的安乐死笼中,以30%-70%的容器体积/分钟的平衡率。大鼠失去意识后(20-60分钟),通过宫颈脱位对大鼠实施安乐死,以确保无痛死亡。 将大鼠浸泡在75%的酒精…

Representative Results

次级贴壁细胞群稳定且均匀。随着细胞的连续增殖,大多数细胞变得更大,形状不规则并生长成径向贴壁盘(图2C,D)。流式细胞术显示,表达CD11b / c(单核巨噬细胞谱系细胞表面的分子标记物)的细胞百分比约为37.94%(图2A,B)。为了进一步验证CD11b / c阳性细胞是单核细胞 – 巨噬细胞谱系细胞,在用…

Discussion

破骨细胞是参与骨病发生和发展的最重要细胞类型之一,也是骨病研究的主要对象之一20.单核细胞/巨噬细胞可分化为破骨细胞。由于单核巨噬细胞(RAW264.7细胞)购买成本太高,并且在培养过程中容易被激活,因此很难使用该细胞系进行 体外 分化实验。虽然已经开发了几种从骨髓中提取单核细胞/巨噬细胞的方法,包括密度梯度离心,胶原酶消化,微球富集和流式细胞术?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了浙江省自然科学基金的支持(赠款编号:LY19H060001)和浙江省中医药科技计划项目(编号:2022ZB093)。

Materials

35 mm2 cell climbing slices NEST Biotechnology 80102
Anti-cathepsin K Abcam ab19027 1:1,000
Anti-CD11 isotype control Abcam ab172730 1 μg/test,1.675 mg/Ml
Anti-CD11b/c Absin abs124232  1μg/test, 1 mg/mL
Anti-TRAP Abcam ab191406 1:1,000
Anti-β-actin Beyotime  AF5003 1:1,000
Cell climbing slices NEST Biotechnology 80102
Cell culture dish corning 430167
Cell culture flask corning 430168
Dulbecco's modified eagle medium (DMEM) Gibco C11995500BT
Fetal bovine serum (FBS) Gibco 10099141C
Goat anti-rabbit IgG Abcam ab150077 for IF, 1:2,000
goat anti-rabbit IgG Abcam ab6721 for WB, 1:2,000
M-CSF Pepro tech 400-28
PBS Biosharp BL302A
RANKL Pepro tech 400-30
SD rat Shanghai SLAC Laboratory Animal Co, Ltd 1-10 days old
SDS-PAGE gel preparation kit Solarbio P1200
TRAP/ALP Staining Kit Wako 294-67001
Trypsin-EDTA solution Biosharp BL512A
Wright-Giemsa solution Keygen Biotech KGA225-1

References

  1. Jakubzick, C. V., Randolph, G. J., Henson, P. M. Monocyte differentiation and antigen-presenting functions. Nature Reviews. Immunology. 17 (6), 349-362 (2017).
  2. Locati, M., Curtale, G., Mantovani, A. Diversity, mechanisms, and significance of macrophage plasticity. Annual Review of Pathology. 15 (1), 123-147 (2020).
  3. Boyle, W. J., Simonet, W. S., Lacey, D. L. Osteoclast differentiation and activation. Nature. 423 (6937), 337-342 (2003).
  4. Ono, T., Nakashima, T. Recent advances in osteoclast biology. Histochemistry and Cell Biology. 149 (4), 325-341 (2018).
  5. Zhou, X., et al. Wnt/ß-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells. Cell Death & Disease. 12 (6), 521-534 (2021).
  6. Yu, Q., Zhao, B., He, Q., Zhang, Y., Peng, X. B. microRNA-206 is required for osteoarthritis development through its effect on apoptosis and autophagy of articular chondrocytes via modulating the phosphoinositide 3-kinase/protein kinase B-mTOR pathway by targeting insulin-like growth factor-1. Journal of Cellular Biochemistry. 120 (4), 5287-5303 (2019).
  7. Li, Z., MacDougald, O. A. Preclinical models for investigating how bone marrow adipocytes influence bone and hematopoietic cellularity. Best Practice & Research. Clinical Endocrinology & Metabolism. 35 (4), 101547-101560 (2021).
  8. Horowitz, M. C., et al. marrow adipocytes. Adipocyte. 6 (3), 193-204 (2017).
  9. Maridas, D. E., Rendina-Ruedy, E., Le, P. T., Rosen, C. J. Isolation, culture, and differentiation of bone marrow stromal cells and osteoclast progenitors frommice. Journal of Visualized Experiments. (131), e56750 (2018).
  10. Schyns, J., et al. Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nature Communications. 10 (1), 3964-3980 (2019).
  11. Atif, S. M., Gibbings, S. L., Jakubzick, C. V. Isolation and identification of interstitial macrophages from the lungs using different digestion enzymes and staining strategies. Methods in Molecular Biology. 1784, 69-76 (2018).
  12. Scheven, B. A., Milne, J. S., Robins, S. P. A sequential culture approach to study osteoclast differentiation from nonadherent porcine bone marrow cells. In Vitro Cellular & Developmental Biology. Animal. 34 (7), 568-577 (1998).
  13. Bradley, E. W., Oursler, M. J. Osteoclast culture and resorption assays. Methods in Molecular Biology. , 19-35 (2008).
  14. Yu, Y. R., et al. Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. American Journal of Respiratory Cell and Molecular Biology. 54 (1), 13-24 (2016).
  15. Gibbings, S. L., Jakubzick, C. V. A consistent method to identify and isolate mononuclear phagocytes from human lung and lymph nodes. Methods in Molecular Biology. 1799, 381-395 (2018).
  16. Jacquin, C., Gran, D. E., Lee, S. K., Lorenzo, J. A., Aguila, H. L. Identification of multiple osteoclast precursor populations in murine bone marrow. Journal of Bone and Mineral Research. 21 (1), 67-77 (2006).
  17. Gibbings, S. L., et al. Three unique interstitial macrophages in the murine lung at steady state. American Journal of Respiratory Cell and Molecular Biology. 57 (1), 66-76 (2017).
  18. Higashi, S. L., et al. Ultra-high-speed western blot using immunoreaction enhancing technology. Journal of Visualized Experiments. (163), e61657 (2020).
  19. Gallagher, S., Chakavarti, D. Immunoblot analysis. Journal of Visualized Experiments. 20 (16), 759 (2008).
  20. Yin, Z., et al. Glycyrrhizic acid suppresses osteoclast differentiation and postmenopausal osteoporosis by modulating the NF-κB, ERK, and JNK signaling pathways. European Journal of Pharmocology. 859, 172550 (2019).
  21. Liu, F., et al. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biology. , (2021).
  22. Jin, X., et al. Thioacetamide promotes osteoclast transformation of bone marrow macrophages by influencing PI3K/AKT pathways. Journal of Orthopedic Surgery and Research. 17 (1), 53-63 (2022).
check_url/kr/64053?article_type=t

Play Video

Cite This Article
Jin, X., Li, Y., Chen, X., Chen, J., Xu, J. Isolation of Monocyte-Macrophage Lineage Cells from Rat Bones by Secondary Adherence Method. J. Vis. Exp. (185), e64053, doi:10.3791/64053 (2022).

View Video