Summary

达乌尔 蝴蝶 幼虫的大规模趋重试验

Published: May 31, 2022
doi:

Summary

本协议概述了用 Caenorhabditis dauer幼虫进行大规模重力测定的方法。与基于平板的测定相比,该协议可以更好地检测重症行为。

Abstract

重力感觉是一个重要且相对研究不足的过程。感知重力使动物能够驾驭周围环境并促进运动。此外,发生在哺乳动物内耳的重力感觉与听力密切相关 – 因此,了解这一过程对听觉和前庭研究具有影响。一些模式生物(包括 果蝇)存在重力测定。先前已经对单个蠕虫在溶液中沉淀时的方向偏好进行了测定。然而,尚未描述妊娠 盲肠 炎的可靠和稳健的测定方法。本协议概述了进行重症测定的程序,该程序可用于一次测试数百个 Caenorhabditis dauers。这种大规模、长距离检测允许详细的数据收集,揭示标准板检测中可能遗漏的表型。将沿垂直轴的Dauer运动与水平控制进行比较,以确保方向偏差是由于重力引起的。然后可以在菌株或实验条件之间比较重力偏好。该方法可以确定蠕虫中趋重物的分子、细胞和环境要求。

Introduction

感知地球的引力对于许多生物的方向、运动、协调和平衡至关重要。然而,与其他感官相比,人们对重力感觉的分子机制和神经回路知之甚少。在动物中,重力感觉与其他刺激相互作用,并且可以被其他刺激所取代,从而影响行为。视觉线索、本体感觉反馈和前庭信息可以整合在一起,以产生相对于动物周围环境的身体意识感12。相反,引力偏好可以在存在其他刺激的情况下改变3,45。因此,引力行为是研究重力感觉和理解神经系统复杂的感觉统合和决策的理想选择。

秀丽隐杆线虫是一种特别有用的模式生物,用于研究重症,因为它具有多酚生命周期。当在发育过程中暴露于压力源时,包括高温、过度拥挤或缺乏食物,秀丽隐杆线虫幼虫会发育成具有高度抗压性的dauers6。作为dauers,蠕虫执行特征性行为,例如nictation,其中蠕虫“站立”尾巴并挥舞头部,这可能有助于扩散到更好的栖息地7。秀丽隐杆线虫和日本梭菌的重力测定表明,dauer幼虫的重力为负,并且这种行为在dauers中比在成虫中更容易观察到89。在其他Caenorhabditis菌株中测试重量性可能会揭示重力行为的自然变化。

重力感觉的机制已经在Euglena果蝇Ciona和其他各种物种中使用gravitaxis测定31011进行了表征。同时,对Caenorhabditis的妊娠研究最初提供了不同的结果。一项对秀丽隐杆线虫定向偏好的研究发现,蠕虫在溶液中低头定向,表明正重力偏好12。同时,尽管C. japonica dauers很早就被确定为负引力8,但这种行为直到最近才在秀丽隐杆线虫9中得到描述。在蠕虫中开发具有代表性的妊娠测定时出现了一些挑战。Caenorhabditis菌株维持在琼脂平板上;出于这个原因,行为测定通常使用琼脂平板作为其实验设计的一部分131415。最早报道的Caenorhabditis的重症测定是通过将板侧立与水平对照板成90°角来进行的8。然而,在这些条件下,趋重性行为并不总是稳健的。虽然可以在解决方案12中测定成虫的方向偏好,但这种定向偏好也可能与上下文相关,如果蠕虫在爬行而不是游泳,则会导致不同的行为。此外,秀丽隐杆线虫对其他刺激敏感,包括光和电磁场16,17这些刺激会干扰它们对重力9的反应。因此,一种更新的重症测定法可以抵御其他环境变量,这对于剖析这种感觉过程的机制非常重要。

在本协议中,描述了用于观察妊娠 盲肠炎 的测定。这项研究的设置部分基于一种研究神经肌肉完整性的方法1819。使用标准程序20培养和分离Dauer幼虫。然后将它们注入由两个装有琼脂的 5 mL 血清移液器制成的腔室中。这些腔室可以垂直或水平定向,并放置在黑暗的法拉第笼内12-24小时,以屏蔽光和电磁场。记录每个蠕虫在腔室中的位置,并与参考菌株(如 秀丽隐杆线虫 N2)的垂直分类进行比较。

Protocol

本研究中使用的菌株是 秀丽隐杆线虫 (N2)和 C. briggsae (AF16)(见 材料表)。每次测定都使用dauers的混合性别群体。 1. 腔室准备 在通风橱中工作。使用本生燃烧器、1-2 个剃须刀片、钳子、镊子和塑料切割表面设置工作区(见 材料表)。 对于每个腔室,收集两个 5 mL 血清移液器。用镊子从一个移液器上取?…

Representative Results

比较不同物种的重物按照上述程序,可以将C . briggsae dauer gravitaxis与 秀丽隐杆线虫 和水平对照进行比较。 C. briggsae dauers的垂直分布(栗色)向室顶部倾斜,大部分蠕虫达到+7(图2A)。与水平控制(aqua)相反,其中dauers在腔室中心周围以大致钟形曲线分布,这种趋势表明负重力行为。这些数据可以与在同一实验日进行的秀 丽隐杆线虫<…

Discussion

与先前方法的比较
与趋化性不同,使用传统的琼脂平板实验设计无法可靠地观察 Caenorhabditis 中的重症。标准培养皿的直径为 150 毫米,因此在任一方向上只有 75 毫米可供 dauers 展示对重力的偏好。尽管秀 丽隐杆线 虫的定向偏好可以在溶液12中测定,但这种方法的通量很低,因为必须一次分析一个蠕虫。此外,漂浮在介质中的蠕虫与在表面上爬行的蠕…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了美国国立卫生研究院对JHR的研究资助(#R01 5R01HD081266和#R01GM141493)。一些菌株由CGC提供,CGC由NIH研究基础设施计划办公室(P40 OD010440)资助。我们要感谢Pradeep Joshi(UCSB)的编辑投入。统计咨询由UCSB DATALAB提供。

Materials

1% Sodium Dodecyl Sulfate solution From stock 10% (w/v) SDS in DI water
15 mL Centrifuge tubes Falcon 14-959-53A
3 mm Hex key Other similar sized metal tools may be used
4% Agar in Normal Growth Medium (NGM) – 1 L Prior to autoclaving: 3 g NaCl, 40 g Agar, 2.5 g Peptone, 2 g Dextrose, 10 mL Uracil (2 mg/mL), 500 μL Cholesterol (10 mg/mL), 1 mL CaCl2, 962 mL DI water; After autoclaving: 24.5 mL Phosphate Buffer, 1 mL 1 MgSO4 (1 M), 1 mL Streptomycin (200 mg/mL)
5 mL Serological pipettes Fisherbrand S68228C Polystyrene, not borosilicate glass
60% Cold sucrose solution 60% sucrose (w/v) in DI water; sterilize by filtration (0.45 μm filter). Keep at 4 °C
AF16 C. briggsae or other experimental strain Available from the CGC (Caenorhabditis Genetics Center)
Bunsen burner
Cling-wrap Fisherbrand 22-305654
Clinical centrifuge
Disposable razor blades Fisherbrand 12-640
Faraday cage Can be constructed using cardboard and aluminum foil; 30" L x 6" W x 26" H or larger
Ink markers Sharpie or other brand for marking on plastic
Labeling tape Carolina 215620
M9 buffer 22 mM KH2PO4, 42 mM Na2HPO4, 86 mM NaCl
N2 C. elegans strain Available from the CGC (Caenorhabditis Genetics Center)
NGM plates with OP50 1.7% (w/v) agar in NGM (see description: 4% agar in NGM). Seed with OP50
Paraffin film Bemis 13-374-10
Plastic cutting board
Pliers
Rotating vertical mixer BTLab SYSTEMS BT913 With 22 x 15 mL tube bar
Serological pipettor Corning 357469
Stereo Microscope Laxco S2103LS100
Tally counter ULINE H-7350
Thick NGM/agar plate media – 1 L See 4% Agar in NGM recipe; replace 40 g Agar with 20 g Agar
Tweezers

References

  1. Peterka, R. J. Sensory integration for human balance control. Handbook of Clinical Neurology. 159, 27-42 (2018).
  2. Lacquaniti, F., et al. Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates. BioMed Research International. 2014, 61584 (2014).
  3. Bostwick, M., et al. Antagonistic inhibitory circuits integrate visual and gravitactic behaviors. Current Biology. 30 (4), 600-609 (2020).
  4. Ntefidou, M., Richter, P., Streb, C., Lebert, M., Hader, D. -. P. High light exposure leads to a sign change in gravitaxis of the flagellate Euglena gracilis. Journal of Gravitational Physiology. 9 (1), 277-278 (2002).
  5. Fedele, G., Green, E. W., Rosato, E., Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nature Communications. 5, 4391 (2014).
  6. Frézal, L., Félix, M. -. A. C. elegans outside the Petri dish. eLife. 4, 05849 (2015).
  7. Lee, H., et al. a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nature Neuroscience. 15 (1), 107-112 (2012).
  8. Okumura, E., Tanaka, R., Yoshiga, T. Negative gravitactic behavior of Caenorhabditis japonica dauer larvae. The Journal of Experimental Biology. 216, 1470-1474 (2013).
  9. Ackley, C., et al. Parallel mechanosensory systems are required for negative gravitaxis in C. elegans. bioRxiv. , (2022).
  10. Häder, D. -. P., Hemmersbach, R., Schwartzbach, S. D., Shigeoka, S. Gravitaxis in Euglena. Euglena: Biochemistry, Cell and Molecular Biology. , 237-266 (2017).
  11. Sun, Y., et al. TRPA channels distinguish gravity sensing from hearing in Johnston’s organ. Proceedings of the National Academy of Sciences of the United States of America. 106 (32), 13606-13611 (2009).
  12. Chen, W. -. L., Ko, H., Chuang, H. -. S., Raizen, D. M., Bau, H. H. Caenorhabditis elegans exhibits positive gravitaxis. BMC Biology. 19 (1), 186 (2021).
  13. Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: Identification of attractants and analysis of the response by use of mutants. Proceedings of the National Academy of Sciences of the United States of America. 70 (3), 817-821 (1973).
  14. Bargmann, C. I., Hartwieg, E., Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell. 74 (3), 515-527 (1993).
  15. Margie, O., Palmer, C., Chin-Sang, I. C. elegans chemotaxis assay. Journal of Visualized Experiments. (74), e50069 (2013).
  16. Ward, A., Liu, J., Feng, Z., Xu, X. Z. S. Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nature Neuroscience. 11 (8), 916-922 (2008).
  17. Vidal-Gadea, A., et al. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. eLife. 4, 07493 (2015).
  18. Bainbridge, C., Schuler, A., Vidal-Gadea, A. G. Method for the assessment of neuromuscular integrity and burrowing choice in vermiform animals. Journal of Neuroscience Methods. 264, 40-46 (2016).
  19. Beron, C., et al. The burrowing behavior of the nematode Caenorhabditis elegans: a new assay for the study of neuromuscular disorders. Genes, Brain and Behavior. 14 (4), 357-368 (2015).
  20. Ow, M. C., Hall, S. E. A Method for obtaining large populations of synchronized Caenorhabditis elegans dauer larvae. Methods in Molecular Biology. , 209-219 (2015).
  21. Chaudhuri, J., Parihar, M., Pires-daSilva, A. An introduction to worm lab: from culturing worms to mutagenesis. Journal of Visualized Experiments. (47), e2293 (2011).
  22. Karp, X. Working with dauer larvae. WormBook. , 1-19 (2018).
  23. Dinno, A. Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. The Stata Journal. 15 (1), 292-300 (2015).
  24. Gray, J. M., et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature. 430 (6997), 317-322 (2004).
  25. Goodman, M. B., Sengupta, P. How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. 유전학. 212 (1), 25-51 (2019).
  26. Iliff, A. J., Xu, X. Z. S. C. elegans: a sensible model for sensory biology. Journal of Neurogenetics. 34 (3-4), 347-350 (2020).
  27. Russell, J., Vidal-Gadea, A. G., Makay, A., Lanam, C., Pierce-Shimomura, J. T. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 111 (22), 8269-8274 (2014).
  28. Iliff, A. J., et al. The nematode C. elegans senses airborne sound. Neuron. 109 (22), 3633-3646 (2021).
  29. Metaxakis, A., Petratou, D., Tavernarakis, N. Multimodal sensory processing in Caenorhabditis elegans. Open Biology. 8 (6), 180049 (2018).
  30. Wicks, S., Rankin, C. Integration of mechanosensory stimuli in Caenorhabditis elegans. The Journal of Neuroscience. 15, 2434-2444 (1995).
  31. Chen, X., Chalfie, M. Modulation of C. elegans touch sensitivity is integrated at multiple levels. The Journal of Neuroscience. 34 (19), 6522-6536 (2014).
  32. Stockand, J. D., Eaton, B. A. Stimulus discrimination by the polymodal sensory neuron. Commun. Integrative Biology. 6 (2), 23469 (2013).
  33. Mackowetzky, K., Yoon, K. H., Mackowetzky, E. J., Waskiewicz, A. J. Development and evolution of the vestibular apparatuses of the inner ear. Journal of Anatomy. 239 (4), 801-828 (2021).
  34. Eppsteiner, R. W., Smith, R. J. H. Genetic disorders of the vestibular system. Current Opinion in Otolaryngology & Head and Neck Surgery. 19 (5), 397-402 (2011).
  35. Roman-Naranjo, P., Gallego-Martinez, A., Lopez Escamez, J. A. Genetics of vestibular syndromes. Current Opinion in Neurology. 31 (1), 105-110 (2018).
  36. Mei, C., et al. Genetics and the individualized therapy of vestibular disorders. Frontiers in Neurology. 12, 633207 (2021).
  37. Weghorst, F. P., Cramer, K. S. The evolution of hearing and balance. eLife. 8, 44567 (2019).
check_url/kr/64062?article_type=t

Play Video

Cite This Article
Ackley, C., Washiashi, L., Krishnamurthy, R., Rothman, J. H. Large-Scale Gravitaxis Assay of Caenorhabditis Dauer Larvae. J. Vis. Exp. (183), e64062, doi:10.3791/64062 (2022).

View Video