Summary

An Experimental Model of Myocardial Infarction for Studying Cardiac Repair and Remodeling in Knockout Mice

Published: July 14, 2023
doi:

Summary

Here, we describe an experimental model of myocardial infarction, an echocardiography procedure to study cardiac remodeling and function, and procedures for quantifying fibrosis and hypertrophy in picrosirius red-stained and rhodamine-stained sections, as well as the infarct size and expansion index in slices stained with Masson’s trichrome.

Abstract

Cardiovascular disease is the most prevalent cause of death in Western countries, with acute myocardial infarction (MI) being the most prevalent form. This paper describes a protocol for studying the role of galectin 3 (Gal-3) in the temporal evolution of cardiac healing and remodeling in an experimental animal model of MI.

The procedures described include an experimental model of MI with a permanent coronary ligature in male C57BL/6J (control) and Gal-3 knockout (KO) mice, an echocardiography procedure to study cardiac remodeling and systolic function in vivo, a histological evaluation of interstitial myocardial fibrosis with picrosirius red-stained and rhodamine-conjugated lectin-stained sections for studying myocyte hypertrophy by the cross-sectional area (MCSA), and the quantification of infarct size and cardiac remodeling (scar thinning, septum thickness, and expansion index) by planimetry in slices stained with Masson’s trichrome and triphenyl tetrazolium chloride. Gal-3 KO mice with MI showed disrupted cardiac remodeling and an increase in the scar thinning ratio and the expansion index. At the onset of MI, myocardial function and cardiac remodeling were also severely affected. At 4 weeks post MI, the natural evolution of fibrosis in infarcted Gal-3 KO mice was also affected.

In summary, the experimental model of MI is a suitable model for studying the temporal evolution of cardiac repair and remodeling in mice with the genetic deletion of Gal-3 and other animal models. The lack of Gal-3 affects the dynamics of cardiac repair and disrupts the evolution of cardiac remodeling and function after MI.

Introduction

Myocardial infarction (MI) is the most prevalent form of cardiovascular disease. After MI, the myocardium undergoes serial morphological and functional changes, including the healing of the MI infarct zone, ventricular remodeling (VR), and myocardial dysfunction1. The healing of MI is a dynamic and well-orchestrated process associated with profound inflammatory infiltration that ends in the formation of a fibrotic scar2,3. The experimental model of MI in mice is currently used for studying cardiac remodeling under pathological conditions4,5, and awareness of the precise surgical protocol is essential to develop a reproducible and effective procedure for inducing a permanent coronary ligature. This method is needed to study the healing of MI and its relevance in the temporal evolution of left ventricular remodeling (LVR) and the cardiac dysfunction associated with MI.

Galectins are a group of lectins that recognize specific carbohydrates in intracellular ligands, membrane receptors, and extracellular glycoproteins. Galectin 3 (Gal-3) is a member of this family that acts through the recognition and cross-linking of N- and O-glycans in glycoconjugates on the cell surface, and it is widely expressed in the immune system6. Previous studies have investigated the role of Gal-3 as a regulator of inflammation and fibrosis in cardiovascular diseases7,8,9,10,11,12. As targeting the regulatory factors of inflammation during healing is highly relevant because inflammation can notably affect the evolution of remodeling, we aimed to describe a protocol for studying the temporal evolution of post-MI ventricular remodeling and the steps and methods for determining how the genetic mutation of Gal-3 modifies the temporal evolution of healing in MI and affects cardiac remodeling and function in mice.

Protocol

NOTE: All the experiments described in this protocol were approved by the Animal Care and Research Committee of the University of Buenos Aires (CICUAL), in line with the National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals13. For the experiments, use male, age-matched C57BL/6J and Gal-3 KO mice (8-10 weeks old) weighing 30-35 g, which allow for better manipulation for surgery. Allow the animals access to water and food ad libi…

Representative Results

Post-MI survival and necropsy Over 4 weeks of follow-up, 17% (4/23) of the C57 mice versus 40% (8/20) of the Gal-3 KO mice were found dead. The necropsy was performed; the dead Gal-3 KO mice showed larger hearts than the C57 mice (Figure 1), and 38% of the C57 mice compared with 32% of the Gal-3 KO mice had macroscopic chest clots that were directly associated with cardiac rupture. The latter demonstrated that the cause of death was not relat…

Discussion

The experimental model of MI by permanent coronary artery ligature is used for studying a wide variety of pathophysiological mechanisms of cardiac repair and remodeling5,14,17. This article summarizes different methods currently used in this laboratory for studying the temporal evolution of cardiac repair and its effects on post-MI ventricular remodeling14,17. Two models…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors gratefully appreciate the technical assistance of Ana Chiaro. This work was supported by grants from the Argentinean Agency for Promotion of Science and Technology (PICT 2014-2320, 2019-02987 and PICT 2018-03267 to VM) and the University of Buenos Aires (UBACyT 2018- 382 20020170100619BA to GEG).

Materials

8-0 silk suture  Ethicon
C57BL/6J mice Department of Bioresources of the Faculty of Veterinary of the University of Buenos Aires, Argentina
Forceps
Hardvard 386 respirator Hardvard company
Heating pad maintain animal's temperature during surgery
Image Pro-Plus 6.0 Media Cybernetics Image Analysis Software
Ketamine  Holiday
Masson Trichrome BIOPUR
Picrosirius red BIOPUR
Retractors
 Rodent Ventilator Model 683  Harvard Apparatus Mechanical ventilator
Scissors 
Stereoscopic magnifying glass Arcano
Vivid 7 machine (General Electric Medical Systems, Horten, Norway) General Electric Any tracking software can be utilized with this protocol
WGA no. RL-1022, Vector Laboratories, Burlingame Vector Laboratories
Xylazine Pro-Ser

References

  1. Opie, L. H., Commerford, P. J., Gersh, B. J., Pfeffer, M. A. Controversies in ventricular remodelling. Lancet. 367 (9507), 356-367 (2006).
  2. Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology. 11 (5), 255-265 (2014).
  3. Clarke, S. A., Richardson, W. J., Holmes, J. W. Modifying the mechanics of healing infarcts: Is better the enemy of good. Journal of Molecular and Cellular Cardiology. 93, 115-124 (2016).
  4. Cassaglia, P., et al. Genetic deletion of galectin-3 alters the temporal evolution of macrophage infiltration and healing affecting the cardiac remodeling and function after myocardial infarction in mice. American Journal of Pathology. 190 (9), 1789-1800 (2020).
  5. Seropian, I. M., et al. Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction. American Journal of Pathology. 182 (1), 29-40 (2013).
  6. Yang, R. Y., Rabinovich, G. A., Liu, F. T. Galectins: Structure, function and therapeutic potential. Expert Reviews in Molecular Medicine. 10, (2008).
  7. Liu, Y. H., et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. American Journal of Physiology-Heart and Circulatory Physiology. 296 (2), H404-H412 (2009).
  8. Ibarrola, J., et al. Myocardial injury after ischemia/reperfusion is attenuated by pharmacological galectin-3 inhibition. Scientific Reports. 9, 9607 (2019).
  9. de Boer, R. A., et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Annals of Medicine. 43 (1), 60-68 (2011).
  10. Li, S., Li, S., Hao, X., Zhang, Y., Deng, W. Perindopril and a galectin-3 inhibitor improve ischemic heart failure in rabbits by reducing Gal-3 expression and myocardial fibrosis. Frontiers in Physiology. 10, 267 (2019).
  11. Mo, D., et al. Cardioprotective effects of galectin-3 inhibition against ischemia/reperfusion injury. European Journal of Pharmacology. 863, 172701 (2019).
  12. Suthahar, N., et al. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: An update. Theranostics. 8 (3), 593-609 (2018).
  13. US Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. National Academies Press. , (2011).
  14. González, G. E., et al. Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. International Journal of Cardiology. 176 (3), 1423-1425 (2014).
  15. González, G. E., et al. Cardiac-deleterious role of galectin-3 in chronic angiotensin II-induced hypertension. American Journal of Physiology-Heart and Circulatory Physiology. 311 (5), H1287-H1296 (2016).
  16. González, G. E., et al. Effect of early versus late AT-1 receptor blockade with losartan on postmyocardial infarction ventricular remodeling in rabbits. American Journal of Physiology-Heart and Circulatory Physiology. 297 (1), H375-H386 (2009).
  17. Muthuramu, I., Lox, M., Jacobs, F., De Geest, B. Permanent ligation of the left anterior descending coronary artery in mice: A model of post-myocardial infarction remodelling and heart failure. Journal of Visualized Experiments. 94 (94), (2014).
  18. Dai, W., Wold, L. E., Dow, J. S., Kloner, R. A. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: A novel approach to preserve cardiac function after myocardial infarction. Journal of the American College of Cardiology. 46 (4), 714-719 (2005).
  19. Jones, S. P., et al. The NHLBI-sponsored Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): A new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circulation Research. 116 (4), 572-586 (2015).
  20. Gao, S., Ho, D., Vatner, D. E., Vatner, S. F. Echocardiography in mice. Current Protocols in Mouse Biology. 1, 71-83 (2011).
  21. Yang, X. P., et al. Echocardiographic assessment of cardiac function in conscious and anesthetized mice. American Journal of Physiology. 277 (5), H1967-H1974 (1999).
  22. Lindsey, M. L., Kassiri, Z., Virag, J. A. I., Castro Brás, d. e., E, L., Scherrer-Crosbie, M. Guidelines for measuring cardiac physiology in mice. American Journal of Physiology-Heart and Circulatory Physiology. 314 (4), H733-H752 (2018).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Fontana Estevez, F. S., Miksztowicz, V., Seropián, I. M., Cassaglia, P., Bustos, R., Touceda, V., Cianciulli, T., Cassanova, V., Morales, C., González, G. E. An Experimental Model of Myocardial Infarction for Studying Cardiac Repair and Remodeling in Knockout Mice. J. Vis. Exp. (197), e64143, doi:10.3791/64143 (2023).

View Video