Summary

Undersøgelse af funktioner og aktiviteter af neuronal K-Cl Co-Transporter KCC2 ved hjælp af Western Blotting

Published: December 09, 2022
doi:

Summary

Den nuværende protokol fremhæver anvendelsen af western blotting teknik til at studere funktioner og aktiviteter af neuronal K-Cl co-transporter KCC2. Protokollen beskriver undersøgelsen af KCC2-phosphorylering på kinaseregulerende steder Thr906/1007 via western blotting. Yderligere metoder til bekræftelse af KCC2-aktivitet er også kort fremhævet i denne tekst.

Abstract

Kaliumchlorid cotransporters 2 (KCC2) er medlem af den opløste bærerfamilie 12 (SLC12) af kation-chlorid-cotransportere (CCC’er), der udelukkende findes i neuronen og er afgørende for, at Cl-homeostase fungerer korrekt og følgelig funktionel GABAergisk hæmning. Manglende korrekt regulering af KCC2 er skadelig og har været forbundet med forekomsten af flere neurologiske sygdomme, herunder epilepsi. Der er sket betydelige fremskridt med hensyn til at forstå de mekanismer, der er involveret i reguleringen af KCC2, akkrediteret til udvikling af teknikker, der gør det muligt for forskere at studere dets funktioner og aktiviteter; enten via direkte (vurdering af kinaseregulerende steder phosphorylering) eller indirekte (observation og overvågning af GABA-aktivitet) undersøgelser. Her fremhæver protokollen, hvordan man undersøger KCC2-fosforylering på kinaseregulerende steder – Thr906 og Thr1007 – ved hjælp af western blotting-teknik. Der er andre klassiske metoder, der bruges til direkte at måle KCC2-aktivitet, såsom rubidiumion og thalliumionoptagelsesanalyse. Yderligere teknikker såsom patch-clamp-elektrofysiologi bruges til at måle GABA-aktivitet; derfor indirekte afspejler aktiveret og / eller inaktiveret KCC2 som informeret ved vurderingen af intracellulær chloridionhomeostase. Et par af disse yderligere teknikker vil kort blive diskuteret i dette manuskript.

Introduction

Kaliumchlorid cotransporters 2 (KCC2) er medlem af den opløste bærerfamilie 12 (SLC12) af kation-chlorid-cotransportere (CCC’er), der udelukkende findes i neuronen og er afgørende for, at Cl-homeostase fungerer korrekt og følgelig funktionel GABAergisk hæmning 1,2,3,4. Vedligeholdelsen af lav intraneuronal Cl-koncentration ([Cl-]i) ved 4-6 mM ved KCC2 letter γ-aminosmørsyre (GABA)/glycinhyperpolarisering og synaptisk hæmning i hjernen og rygmarven5. Manglende korrekt regulering af KCC2 har været forbundet med forekomsten af flere neurologiske sygdomme, herunder epilepsi4. Desuden har nedsat KCC2-medieret Cl-ekstrudering og nedsat hyperpolariserende GABAA og / eller glycinreceptormedierede strømme været impliceret i epilepsi, neuropatisk smerte og spasticitet 6,7. Neuronal KCC2 moduleres negativt via phosphorylering af vigtige regulatoriske rester inden for dets C-terminale intracellulære domæne af det med-ingen-lysin (WNK)-STE20 / SPS1-relaterede prolin / alaninrige (SPAK) / Oxidativ stressresponsiv (OSR) kinasesignalkompleks1, hvilket letter vedligeholdelsen af depolariseret GABA-aktivitet i umodne neuroner 2,8,9 . WNK-SPAK / OSR1 phosphorylerer threoninrester 906 og 1007 (Thr906 / Thr1007) og nedregulerer efterfølgende mRNA-genekspression af KCC2, hvilket fører til en deraf følgende forringelse af dets fysiologiske funktion 8,10. Endnu vigtigere er det imidlertid allerede en kendsgerning, at WNK-SPAK / OSR1 kinasekomplekset er kendt for phosphorylat og hæmmer KCC2-ekspression 1,2,4,11,12, og at inhiberingen af kinasekompleksets signalveje til phosphorylat Thr906 / Thr1007 har været forbundet med den øgede ekspression af KCC2 mRNA-genet 13,14,15 . Det er vigtigt at bemærke, at reguleringen af neuronal KCC2 og Na+-K+-2Cl cotransporters 1 (NKCC1) ekspression via proteinfosforylering virker samtidigt og i omvendte mønstre 1,4,16.

Der er sket konsekvente og betydelige fremskridt med hensyn til forståelsen af de mekanismer, der er involveret i reguleringen af KCC2, og som er akkrediteret til udvikling af teknikker, der gør det muligt for forskere at studere dets funktioner og aktiviteter; enten via direkte (vurdering af kinaseregulerende steder phosphorylering) eller indirekte (observation og overvågning af GABA-aktivitet) undersøgelser. Protokollen, der præsenteres her, fremhæver anvendelsen af western blotting-teknikker til at studere funktionerne og aktiviteterne hos neuronal K +-Cl-co-transporter KCC2 ved at undersøge phosphorylering af cotransporteren på kinaseregulerende steder Thr906/1007.

Western blot er en metode, der bruges til at detektere specifikke proteiner af interesse fra en prøve af væv eller celle. Denne metode adskiller først proteinerne efter størrelse gennem elektroforese. Proteinerne overføres derefter elektroforetisk til en fast støtte (normalt en membran), før målproteinet markeres ved hjælp af et specifikt antistof. Antistofferne er konjugeret til forskellige tags eller fluorophorekonjugerede antistoffer, der detekteres ved hjælp af enten kolorimetriske, kemiluminescens eller fluorescensmetoder. Dette gør det muligt at detektere et specifikt målprotein fra en blanding af proteiner. Denne teknik er blevet brugt til at karakterisere fosfospecifikke steder i KCCs1 og er blevet brugt til at identificere kinasehæmmere, der hæmmer KCC3 Thr991 / Thr1048 phosphorylation17. Ved at følge denne protokol kan man specifikt detektere total og phosphoryleret KCC2 fra celle / væv lysater. I princippet er påvisning af proteinkonjugerede antistoffer ved hjælp af denne teknik meget instrumentel, da det hjælper med at forbedre forståelsen af samarbejdsaktiviteter på phospho-stederne i KCC2, hvilket kaster lys over de molekylære mekanismer, der er involveret i deres fysiologiske reguleringer. Den kvantitative analyse af det samlede proteinekspression er repræsentativt for KCC2’s funktion og aktivitet. Der er andre klassiske metoder, der bruges til direkte at måle KCC2-aktivitet, såsom rubidiumion og thalliumionoptagelsesanalyse. Yderligere teknikker såsom patch-clamp-elektrofysiologi bruges til at måle GABA-aktivitet; derfor indirekte afspejler aktiveret og / eller inaktiveret KCC2 som informeret ved vurderingen af intracellulær chloridionhomeostase.

Protocol

BEMÆRK: Protokollen beskriver western blotting-metoden til påvisning af specifikke proteiner af interesse. 1. Cellekultur og transfektion Varm alle reagenserne i perlebadet (37 °C) op inden celledyrkningsproceduren. Forbered kulturmedium, Dulbecco’s Modified Eagle Medium (DMEM), suppleret med 10% føtalt bovint serum, 1% hver af 2mM L-glutamin, 100x ikke-essentiel aminosyre, 100 mM natriumpyruvat og 100 enheder / ml penicillin-streptomycin. Optøning af …

Representative Results

Her undersøgte det repræsentative resultat, der blev præsenteret i figur 1, virkningen af staurosporin og NEM på WNK-SPAK / OSR1 medieret phosphorylering af KCC2 og NKCC1 i HEK293 cellelinjer, der stabilt udtrykker KCC2b (HEKrnKCC2b)18 ved hjælp af western blotting-teknikken. Omfattende detaljer om de repræsentative resultater diskuteres i Zhang et al.15. I lighed med NAM er staurosporin en bred kinasehæmmer, der kan …

Discussion

Mange metoder er blevet brugt til at måle aktiviteterne i SLC12 af CCC’er, der udtrykkes i neuronerne, herunder KCC2. Mange af disse teknikker har vist sig at forbedre den videnskabelige viden om analysen af disse transportørers funktionelle relevans og deres strukturfunktionsmønstre i forskellige sygdomsrelaterede mutationer. Kritisk er der fordele og forbehold ved de forskellige metoder21. Protokollen forklaret ovenfor skitserede imidlertid, hvordan man vurderer KCC2-phosphorylering på kinas…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af The Royal Society UK (Grant no. IEC \ NSFC \ 201094) og et Commonwealth Ph.D. Scholarship.

Materials

40% acrylamide Sigma-Aldrich A2917 Used to make seperating and stacking gel for SDS-PAGE 
Ammonium Per Sulfate Sigma-Aldrich 248614 Used to make seperating and stacking gel for SDS-PAGE 
anti pSPAK Dundee University S670B Used as primary antibody for western blotting
anti-KCC2 Dundee University S700C Used as primary antibody for western blotting
anti-KCC2 pSer940 Thermo Fisher Scientific PA5-95678 Used as primary antibody for western blotting
anti-KCC2 pThr1007 Dundee University S961C Used as primary antibody for western blotting
anti-KCC2 pThr906 Dundee University S959C Used as primary antibody for western blotting
anti-mouse Cell Signalling technology 66002 Used as secondary antibody for western blotting
anti-NKCC1 Dundee University S841B Used as primary antibody for western blotting
anti-NKCC1 pThr203/207/212 Dundee University S763B Used as primary antibody for western blotting
anti-rabbit Cell Signalling technology C29F4 Used as secondary antibody for western blotting
anti-sheep abcam ab6900 Used as secondary antibody for western blotting
anti-SPAK Dundee University S669D Used as primary antibody for western blotting
anti-β-Tubulin III Sigma-Aldrich T8578 Used as primary antibody for western blotting
Benzamine Merck UK 135828 Used as component of lysis buffer
Beta-mercaptoethanol Sigma-Aldrich M3148 Used as component of loading buffer and lysis buffer
Bradford Coomasie Thermo Scientific 1856209 Used for lysate protein quantification
Casting apparatus Atto  WSE-1165W Used to run SDS-page electrophoresis
Centrifuge Eppendorf 5804 Used in lysate preparation
Centrifuge VWR MicroStar 17R Used for spinning samples
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D2650-100ML Used for cell culture experiment
Dried Skimmed Milk Marvel N/A Used to make blocking buffer
Dulbecco's Modified Eagle's Medium – high glucose Sigma-Aldrich D6429 Used for cell culture
ECL reagent Perkin Elmer ORTT755/2655 Used to develop image for western blotting
EDTA Fisher Scientific D/0700/53 Used as component of lysis buffer
EGTA Sigma-Aldrich e4378 Used as component of lysis buffer
Electrophoresis Power Supply BioRad PowerPAC HC To supply power to run SDS-page electrophoresis
Ethanol ThermoFisher E/0650DF/17 Used for preparing sterilized equipments and environment
Fetal Bovine Serum -  heat inactivated Merck Life Sciences UK F9665 Used for cell culture
Fumehood Walker A7277 Used for cell culture
Gel Blotting – Whatman GE Healthcare  10426981 Used in western blotting to make transfer sandwich
Glycine Sigma-Aldrich 15527 Used to make buffers
GraphPad Prism Software GraphPad Software, Inc., USA Version 6.0 Used for plotting graphs and analysing data for  western blotting
HCl Acros Organics 10647282 Used to make seperating and stacking gel for SDS-PAGE 
Heating block Grant QBT1 Used to heat WB loading samples
HEK293 cells Merck UK 12022001-1VL Cell line for culture experiment
ImageJ Software Wayne Rasband and Contributors; NIH, USA  ImageJ 1.53e Used to measure band intensities from western blotting images
Imaging system BioRad ChemiDoc MP Used to take western blotting images
Incubator LEEC LEEC precision 190D Used for cell culture
Isopropanol Honeywell 24137 Used in casting gel for electrophoresis
L-glutamine solution Sigma-Aldrich G7513 Used for cell culture
Lithium dodecyl sulfate (LDS) Novex NP0008 Used as loading buffer for western blotting
MEM Non-essential amino acid  Merck Life Sciences UK M7145 Used for cell culture
Microcentrifuge Eppendorf 5418 Used for preparing lysates for WB
Microplate reader BioRad iMark Used for lysate protein concentration readout
Microsoft Powerpoint Microsoft, USA PowerPoint2016 Used to edit western blotting images
Molecular Weight Marker BioRad 1610373 Used for western blotting
N-ethylmaleimide Thermo Fisher Scientific 23030 Used for cell culture experiment
Nitrocellulose membrane Fisher Scientific 45004091 Used for western blotting
Penicillin-Streptomycin Gibco 15140122 Used for cell culture
pH Meter Mettler Toledo Seven compact s210 Used to monitor pH of buffer solutions
Phenylmethylsulfonylfluoride (PMSF) Sigma-Aldrich P7626 Used as component of lysis buffer
Phosphate Buffer Saline Sigma-Aldrich D8537 Used for cell culture
PKCδ pThr505 Cell Signalling technology 9374 Used as primary antibody for western blotting
Sepharose Protein G Generon PG50-00-0002 Used for immunoprecipitation
Sodium chloride Sigma-Aldrich S7653 Used as component of wash buffer
Sodium Chloride Sigma-Aldrich S7653 Used to prepare TBS-T buffer
Sodium Dodecyl Sulfate Sigma-Aldrich L5750 Used to make seperating and stacking gel for SDS-PAGE 
sodium orthovanadate Sigma-Aldrich S6508 Used as component of lysis buffer
Sodium Pyruvate Sigma-Aldrich S8636 Used for cell culture
sodium-β-glycerophosphate Merck UK G9422 Used as component of lysis buffer
Staurosporine (from Streptomyces sp.) Scientific Laboratory Supplies, UK S4400-1MG Used for cell culture experiment
Sucrose Scientifc Laboratory Supplies S0389 Used as component of lysis buffer
TEMED Sigma-Aldrich T7024 Used to make seperating and stacking gel for SDS-PAGE 
Transfer Chamber BioRad 1658005EDU Used in western blotting to transfer protein on membrane
Tris Sigma-Aldrich T6066 Used to make seperating and stacking gel for SDS-PAGE 
Triton-X100 Sigma-Aldrich T8787 Used as component of lysis buffer
Trypsin-EDTA Solution Merck Life Sciences UK T4049 Used for cell culture
Tween-20 Sigma-Aldrich P3179 Used as make TBS-T buffer
Vacuum pump Charles Austen Dymax 5 Used for cell culture
Vortex Scientific Industries K-550-GE Used in sample preparation
Vortex mixer Scientific Industries Ltd Vortex-Genie  K-550-GE Used of mixing resolved sample
Water bath Grant Instruments Ltd. (JB Academy) JBA5 Used to incubate solutions

References

  1. de Los Heros, P., et al. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters. Biochemical Journal. 458 (3), 559-573 (2014).
  2. Heubl, M., et al. GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl(-)-sensitive WNK1 kinase. Nature Communications. 8 (-), 1776 (2017).
  3. Schulte, J. T., Wierenga, C. J., Bruining, H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions. Neuroscience & Biobehavioral Reviews. 90, 260-271 (2018).
  4. Shekarabi, M., et al. WNK Kinase Signaling in Ion Homeostasis and Human Disease. Cell Metabolism. 25 (2), 285-299 (2017).
  5. Rivera, C., et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 397 (6716), 251-255 (1999).
  6. Kahle, K. T., et al. Modulation of neuronal activity by phosphorylation of the K-Cl cotransporter KCC2. Trends in Neuroscience. 36 (12), 726-737 (2013).
  7. Andrews, K., Josiah, S. S., Zhang, J. The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington’s Disease and Its Comorbidities. International Journal of Molecular Sciences. 21 (23), 9142 (2020).
  8. Friedel, P., et al. WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons. Science Signaling. 8 (383), 65 (2015).
  9. Watanabe, M., et al. Developmentally regulated KCC2 phosphorylation is essential for dynamic GABA-mediated inhibition and survival. Science Signaling. 12 (603), (2019).
  10. Rinehart, J., et al. Sites of regulated phosphorylation that control K-Cl cotransporter activity. Cell. 138 (3), 525-536 (2009).
  11. Lu, D. C. -. Y., et al. The role of WNK in modulation of KCl cotransport activity in red cells from normal individuals and patients with sickle cell anaemia. Pflügers Archiv-European Journal of Physiology. 471 (11-12), 1539-1549 (2019).
  12. Huang, H., et al. The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases. Aging and Disease. 10 (3), 626-636 (2019).
  13. AlAmri, M. A., Kadri, H., Alderwick, L. J., Jeeves, M., Mehellou, Y. The Photosensitising Clinical Agent Verteporfin Is an Inhibitor of SPAK and OSR1 Kinases. Chembiochem. 19 (19), 2072-2080 (2018).
  14. Zhang, J., et al. Modulation of brain cation-Cl(-) cotransport via the SPAK kinase inhibitor ZT-1a. Nature Communications. 11 (1), 78 (2020).
  15. Zhang, J., et al. Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1. PLoS One. 15 (5), 0232967 (2020).
  16. Alessi, D. R., et al. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Science Signaling. 7 (334), 3 (2014).
  17. Zhang, J., et al. Functional kinomics establishes a critical node of volume-sensitive cation-Cl(-) cotransporter regulation in the mammalian brain. Scientific Reports. 6, 35986 (2016).
  18. Hartmann, A. M., et al. Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1. Journal of Neurochemistry. 111 (2), 321-331 (2009).
  19. Pisella, L. I., et al. Impaired regulation of KCC2 phosphorylation leads to neuronal network dysfunction and neurodevelopmental pathology. Science Signaling. 12 (603), (2019).
  20. Blaesse, P., et al. Oligomerization of KCC2 correlates with development of inhibitory neurotransmission. The Journal of Neuroscience. 26 (41), 10407-10419 (2006).
  21. Medina, I., Pisella, L. I. . Neuronal Chloride Transporters in Health and Disease. , 21-41 (2020).
  22. Thomas, P., Smart, T. G. HEK293 cell line: a vehicle for the expression of recombinant proteins. Journal of Pharmacological and Toxicological Methods. 51 (3), 187-200 (2005).
  23. Friedel, P., et al. A Novel View on the Role of Intracellular Tails in Surface Delivery of the Potassium-Chloride Cotransporter KCC2. eNeuro. 4 (4), (2017).
  24. Lee, Y. -. C., et al. Impact of detergents on membrane protein complex isolation. Journal of Proteome Research. 17 (1), 348-358 (2018).
  25. Vallée, B., Doudeau, M., Godin, F., Bénédetti, H. Characterization at the Molecular Level using Robust Biochemical Approaches of a New Kinase Protein. JoVE (Journal of Visualized Experiments). (148), e59820 (2019).
  26. Johansen, K., Svensson, L. . Molecular Diagnosis of Infectious Diseases. , 15-28 (1998).
  27. Mahmood, T., Yang, P. -. C. Western blot: technique, theory, and trouble shooting. North American Journal of Medical Sciences. 4 (9), 429 (2012).
  28. Klein, J. D., O’Neill, W. C. Volume-sensitive myosin phosphorylation in vascular endothelial cells: correlation with Na-K-2Cl cotransport. American Journal of Physiology-Cell Physiology. 269 (6), 1524-1531 (1995).
  29. Hannemann, A., Flatman, P. W. Phosphorylation and transport in the Na-K-2Cl cotransporters, NKCC1 and NKCC2A, compared in HEK-293 cells. PLoS One. 6 (3), 17992 (2011).
  30. Liu, J., Ma, X., Cooper, G. F., Lu, X. Explicit representation of protein activity states significantly improves causal discovery of protein phosphorylation networks. BMC Bioinformatics. 21 (13), 1-17 (2020).
  31. Terstappen, G. C. Nonradioactive rubidium ion efflux assay and its applications in drug discovery and development. Assay and Drug Development Technologies. 2 (5), 553-559 (2004).
  32. Carmosino, M., Rizzo, F., Torretta, S., Procino, G., Svelto, M. High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells. BMC Cell Biology. 14 (1), 1-9 (2013).
  33. Adragna, N. C., et al. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis. Frontiers in Cellular Neuroscience. 9, 255 (2015).
  34. Zhang, D., Gopalakrishnan, S. M., Freiberg, G., Surowy, C. S. A thallium transport FLIPR-based assay for the identification of KCC2-positive modulators. Journal of Biomolecular Screening. 15 (2), 177-184 (2010).
  35. Yu, H. B., Li, M., Wang, W. P., Wang, X. L. High throughput screening technologies for ion channels. Acta Pharmacologica Sinica. 37 (1), 34-43 (2016).
  36. Hill, C. L., Stephens, G. J. An Introduction to Patch Clamp Recording. Patch Clamp Electrophysiology. , 1-19 (2021).
  37. Conway, L. C., et al. N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation. Journal of Biological Chemistry. 292 (52), 21253-21263 (2017).
  38. Heigele, S., Sultan, S., Toni, N., Bischofberger, J. Bidirectional GABAergic control of action potential firing in newborn hippocampal granule cells. Nature Neuroscience. 19 (2), 263-270 (2016).
  39. Moore, Y. E., Deeb, T. Z., Chadchankar, H., Brandon, N. J., Moss, S. J. Potentiating KCC2 activity is sufficient to limit the onset and severity of seizures. Proceedings of the National Academy of Sciences of the United States of America. 115 (40), 10166-10171 (2018).
  40. Kim, H. R., Rajagopal, L., Meltzer, H. Y., Martina, M. Depolarizing GABAA current in the prefrontal cortex is linked with cognitive impairment in a mouse model relevant for schizophrenia. Science Advances. 7 (14), 5032 (2021).
  41. Yelhekar, T. D., Druzin, M., Karlsson, U., Blomqvist, E., Johansson, S. How to properly measure a current-voltage relation?-interpolation vs. ramp methods applied to studies of GABAA receptors. Frontiers in Cellular Neuroscience. 10, 10 (2016).
  42. Ishibashi, H., Moorhouse, A. J., Nabekura, J. Perforated whole-cell patch-clamp technique: a user’s guide. Patch Clamp Techniques. , 71-83 (2012).
  43. Ebihara, S., Shirato, K., Harata, N., Akaike, N. Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride. The Journal of Physiology. 484 (1), 77-86 (1995).
  44. Kyrozis, A., Reichling, D. B. Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. Journal of Neuroscience Methods. 57 (1), 27-35 (1995).
  45. Lamsa, K., Palva, J. M., Ruusuvuori, E., Kaila, K., Taira, T. Synaptic GABAA activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. Journal of Neurophysiology. 83 (1), 359-366 (2000).
check_url/kr/64179?article_type=t

Play Video

Cite This Article
Josiah, S. S., Meor Azlan, N. F., Oguro-Ando, A., Zhang, J. Study of the Functions and Activities of Neuronal K-Cl Co-Transporter KCC2 Using Western Blotting. J. Vis. Exp. (190), e64179, doi:10.3791/64179 (2022).

View Video