Summary

Determinación de la permeabilidad intestinal usando amarillo de lucifer en un modelo enteroide apical-out

Published: July 27, 2022
doi:

Summary

El presente protocolo describe un método que utiliza lucifer amarillo en un modelo enteroide apical-out para determinar la permeabilidad intestinal. Este método se puede utilizar para determinar la permeabilidad paracelular en enteroides que modelan enfermedades inflamatorias intestinales como la enterocolitis necrosante.

Abstract

Los enteroides son una herramienta de investigación emergente en el estudio de enfermedades inflamatorias intestinales como la enterocolitis necrosante (ECN). Tradicionalmente se cultivan en la conformación basolateral hacia fuera (BO), donde la superficie apical de la célula epitelial se enfrenta a la luz interna. En este modelo, el acceso a la superficie luminal de los enteroides para el tratamiento y la experimentación es un desafío, lo que limita la capacidad de estudiar las interacciones huésped-patógeno. Para evitar esto, se creó un modelo de salida apical neonatal (AO) para la enterocolitis necrosante. Dado que los cambios en la permeabilidad de las células epiteliales intestinales son patognomónicos para la ECN, este protocolo describe el uso del amarillo lucifer (LY) como marcador de permeabilidad paracelular. LY atraviesa la barrera epitelial intestinal a través de las tres vías paracelulares principales: poro, fuga y sin restricciones. El uso de LY en un modelo AO permite un estudio más amplio de la permeabilidad en ECN. Después de la aprobación del IRB y el consentimiento de los padres, se recolectaron muestras quirúrgicas de tejido intestinal de neonatos prematuros humanos. Las células madre intestinales se cosecharon mediante aislamiento de cripta y se utilizaron para cultivar enteroides. Los enteroides se cultivaron hasta la madurez y luego se transformaron AO o se dejaron en conformación BO. Estos no fueron tratados (control) o fueron tratados con lipopolisacáridos (LPS) y sometidos a condiciones hipóxicas para la inducción de ECN in vitro . LY se utilizó para evaluar la permeabilidad. La tinción inmunofluorescente de la proteína apical zonula occludens-1 y la proteína basolateral β-catenina confirmaron la conformación AO. Tanto los enteroides AO como BO tratados con LPS e hipoxia demostraron un aumento significativo de la permeabilidad paracelular en comparación con los controles. Tanto los enteroides AO como BO mostraron una mayor captación de LY en la luz de los enteroides tratados en comparación con los controles. La utilización de LY en un modelo enteroide AO permite la investigación de las tres vías principales de permeabilidad paracelular. Además, permite la investigación de las interacciones huésped-patógeno y cómo esto puede afectar la permeabilidad en comparación con el modelo enteroide BO.

Introduction

Los enteroides son estructuras tridimensionales (3D) derivadas de células madre intestinales humanas con órganos restringidos 1,2. Están formados enteramente por linaje epitelial y contienen todos los tipos de células epiteliales intestinales diferenciadas2. Los enteroides también mantienen la polaridad celular formada por una superficie luminal apical que forma un compartimento interno y una superficie basolateral frente al medio circundante. Los enteroides son un modelo único en el sentido de que conservan las características del huésped a partir del cual se generaron3. Por lo tanto, los enteroides generados a partir de bebés humanos prematuros representan un modelo útil para investigar enfermedades que afectan principalmente a esta población, como la enterocolitis necrosante (ECN).

El modelo enteroide tradicional se cultiva en una conformación basolateral hacia fuera (BO), donde el enteroide está encerrado en una cúpula de matriz de membrana basal (BMM). BMM induce al enteroide a mantener una estructura 3D con la superficie basolateral en el exterior. Los enteroides BO son un modelo adecuado para NEC que cierra la brecha entre las líneas celulares humanas primarias bidimensionales (2D) y los modelos animales in vivo 2,4. La NEC es inducida en enteroides mediante la colocación de patógenos como LPS o bacterias en los medios que rodean los enteroides, seguido de la exposición a condiciones hipóxicas 2,3. El desafío con el modelo BO enteroide NEC es que no permite el estudio efectivo de las interacciones huésped-patógeno, que ocurren en la superficie apical in vivo. Los cambios en la permeabilidad intestinal se deben a estas interacciones huésped-patógeno. Para comprender mejor cómo la permeabilidad afecta la base fisiopatológica de la enfermedad, se debe crear un modelo que implique el tratamiento de la superficie apical.

Co et al. fueron los primeros en demostrar que los enteroides BO maduros pueden ser inducidos a formar una conformación apical-out (AO) mediante la eliminación de los domos BMM y su resuspensión en medios5. Este artículo demostró que los enteroides AO mantuvieron la polaridad epitelial correcta, contenían todos los tipos de células intestinales, sostenían la barrera epitelial intestinal y permitían el acceso a la superficie apical5. El uso de enteroides AO como modelo NEC logra una reproducción fisiológica del proceso de la enfermedad y el estudio de las interacciones huésped-patógeno.

Uno de los principales contribuyentes a la fisiopatología de la ECN es el aumento de la permeabilidad intestinal6. Se han propuesto varias moléculas como una forma de probar la permeabilidad intestinal in vitro7. Entre estos, el amarillo lucifer (LY) es un colorante hidrófilo con picos de excitación y emisión a 428 nm y 540 nm, respectivamente8. A medida que atraviesa todas las principales vías paracelulares, se ha utilizado para evaluar la permeabilidad paracelular en diversas aplicaciones, incluyendo las barreras epiteliales hematoencefálicas eintestinales 8,9. La aplicación tradicional de LY utiliza células cultivadas en monocapas sobre una superficie semipermeable10. LY se aplica a la superficie apical y cruza a través de proteínas de unión estrecha paracelular para congregarse en el lado basolateral. Las concentraciones más altas de LY en el compartimiento basolateral indican una disminución de las proteínas de unión estrecha con la posterior ruptura de la barrera de las células epiteliales intestinales y una mayor permeabilidad10. También se ha descrito en modelos enteroides 3D BO donde LY se agregó a los medios y se obtuvieron imágenes de enteroides individuales para la absorción de LY en el lumen11. Aunque esto permite el análisis cualitativo a través de la visualización de la aceptación de LY, el análisis cuantitativo es limitado. Este protocolo describe una técnica única que utiliza LY para evaluar la permeabilidad paracelular utilizando un modelo enteroide NEC in vitro en enteroides AO mientras se mantiene la orientación 3D. Este método se puede utilizar para el análisis cualitativo y cuantitativo de la permeabilidad.

Protocol

La presente investigación se realizó de conformidad con la aprobación de la Junta de Revisión Institucional (IRB, # 11610, 11611) en la Universidad de Oklahoma. Se requirió el consentimiento de los padres antes de recolectar muestras quirúrgicas humanas según las especificaciones del IRB. Tras la aprobación del IRB y el consentimiento de los padres, se obtuvo tejido del intestino delgado humano de lactantes (edad gestacional corregida [AG] que oscilaba entre 36 y 41 semanas en el momento de la recolección de la …

Representative Results

Conformación AOLos enteroides suspendidos en medios LWRN al 50% durante 72 h asumen una conformación AO (Figura 1). Esto se confirmó mediante tinción inmunofluorescente utilizando monturas enteroides enteroides de la proteína apical, zonula occludens-1 (ZO-1), y la proteína basolateral, β-catenina (Figura 1). Los enteroides AO muestran ZO-1 (verde) en la superficie externa y apical del enteroide, mientras que la β-catenina (…

Discussion

La permeabilidad intestinal es compleja y refleja la función de barrera epitelial. La barrera intestinal comprende una sola capa de células epiteliales que media el transporte transcelular y paracelular14. La permeabilidad paracelular depende de proteínas de unión estrecha que sellan el espacio entre las células epiteliales14. Dentro de este transporte paracelular, hay tres vías distintas por las cuales las moléculas pueden cruzar: poro, fuga y sin restricciones<sup …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Nos gustaría agradecer a Ashley Nelson del Centro Médico de la Universidad de Rochester por su ayuda instrumental con nuestro modelo enteroide. También nos gustaría agradecer a la División de Cirugía Pediátrica de la Universidad de Oklahoma por su apoyo a este proyecto. Este trabajo fue apoyado por el Instituto Nacional de Salud [NIH Grant R03 DK117216-01A1], el Centro de Investigación de Células Madre Adultas de Oklahoma y la Subvención # 20180587 de la Fundación de Salud Presbiteriana otorgada al Departamento de Cirugía del Centro de Ciencias de la Salud de la Universidad de Oklahoma.

Materials

[leu] 15-gastrin 1 Millipore Sigma G9145-.1MG
100 µm sterile cell strainer Corning 431752
100% LWRN conditioned media Made in-house following Miyoshi et al.12
24-well tissue culture plate Corning 3526
96-well black, clear bottom plate Greiner Bio-One 655090
A-83-01 R&D Systems 2939/10
Alexa Fluor 488 goat anti-rabbit secondary ab, 1:1000 Invitrogen A-11034
Alexa Fluor 594 goat anti-mouse secondary ab, 1:1000 Invitrogen A-11032
Amphotericin B Thermo Fisher Scientific 15290026
Anti-zonula occludens-1 rabbit primary ab, 1:200 Cell Signaling #D6L1E
Anti-β-catenin mouse primary ab, 1:100 Cell Signaling #14-2567-82
B-27 supplement minus Vitamin A Thermo Fisher Scientific 17504-044
Barrier PAP pen Scientific Device Laboratory 9804-02
BMM (Matrigel) Corning CB-40230C
Cell Recovery Solution Corning 354270
Dissecting scissors
DMEM Thermo Fisher Scientific 11-965-118
DMEM/F-12 Thermo Fisher Scientific 11320-082
DPBS Thermo Fisher Scientific 14-190-144
Epidermal Growth Factor (EGF) Millipore Sigma GF144
Ethylenediaminetetraacetic acid (EDTA) Millipore Sigma EDS-500G
EVOS m7000 Imaging system Invitrogen AMF7000
Fetal Bovine Serum (FBS) Gemini Bio-Products 100-525
Fluoroshield with DAPI Millipore Sigma F6057-20mL
Forceps
Gentamicin Thermo Fisher Scientific 15-750-060
Glass coverslips
GlutaMAX Thermo Fisher Scientific 35050-061
GraphPad Prism 9 Dotmatics
Insulin Thermo Fisher Scientific 12585014
Lipopolysaccharide (LPS) Millipore Sigma L2630-25MG
Lucifer Yellow CH, Lithium Salt Invitrogen L453
Modular incubator chamber Billups Rothenberg Inc. MIC101
N-2 supplement Thermo Fisher Scientific 17502-048
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES) Thermo Fisher Scientific 15630-080
N-Acetylcysteine Millipore Sigma A9165-5G
Nicotinamide Millipore Sigma N0636-100G
Penicillin-Streptomycin Thermo Fisher Scientific 15140-148
Refrigerated swinging bucket centrifuge
Refrigerated tabletop microcentrifuge
RPMI 1640 Medium Thermo Fisher Scientific 11875093
SB202190 Millipore Sigma S7067-5MG
SpectraMax iD3 microplate reader Molecular devices
Tube Revolver Rotator ThermoFisher Scientific 88881001
Ultra-low attachment 24-well tissue culture plate Corning 3473
Y-27632, ROCK inhibitor (RI) Tocris 1254

References

  1. Ranganathan, S., Smith, E. M., Foulke-Abel, J. D., Barry, E. M. Research in a time of enteroids and organoids: How the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes. 12 (1), 1795492 (2020).
  2. De Fazio, L., et al. Necrotizing enterocolitis: Overview on in vitro models. International Journal of Molecular Sciences. 22 (13), 6761 (2021).
  3. Kovler, M. L., Sodhi, C. P., Hackam, D. J. Precision-based modeling approaches for necrotizing enterocolitis. Disease Models & Mechanisms. 13 (6), (2020).
  4. Ares, G. J., Buonpane, C., Yuan, C., Wood, D., Hunter, C. J. A novel human epithelial enteroid model of necrotizing enterocolitis. Journal of Visualized Experiments. (146), e59194 (2019).
  5. Co, J. Y., et al. Controlling epithelial polarity: A human enteroid model for host-pathogen interactions. Cell Reports. 26 (9), 2509-2520 (2019).
  6. Buonpane, C., et al. ROCK1 inhibitor stabilizes E-cadherin and improves barrier function in experimental necrotizing enterocolitis. The American Journal of Physiology-Gastrointestinal and Liver Physiology. 318 (4), 781-792 (2020).
  7. Hill, D. R., Huang, S., Tsai, Y. H., Spence, J. R., Young, V. B. Real-time measurement of epithelial barrier permeability in human intestinal organoids. Journal of Visualized Experiments. (130), e56960 (2017).
  8. Lian, P., Braber, S., Varasteh, S., Wichers, H. J., Folkerts, G. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Scientific Reports. 11, 13186 (2021).
  9. Zhao, W., Han, L., Bae, Y., Manickam, D. S. Lucifer yellow – A robust paracellular permeability marker in a cell model of the human blood-brain barrier. Journal of Visualized Experiments. (150), e58900 (2019).
  10. Manabe, A., et al. Chlorpheniramine increases paracellular permeability to marker fluorescein lucifer yellow mediated by internalization of occludin in murine colonic epithelial cells. Biological and Pharmaceutical Bulletin. 40 (8), 1299-1305 (2017).
  11. Bardenbacher, M., et al. Permeability analyses and three dimensional imaging of interferon gamma-induced barrier disintegration in intestinal organoids. Stem Cell Research. 35, 101383 (2019).
  12. Miyoshi, H., Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nature Protocols. 8 (12), 2471-2482 (2013).
  13. Buonpane, C., et al. Experimental modeling of necrotizing enterocolitis in human infant intestinal enteroids. Journal of Investigative Surgery. 35 (1), 111-118 (2022).
  14. Chanez-Paredes, S. D., Abtahi, S., Kuo, W. -. T., Turner, J. R. Differentiating between tight junction-dependent and tight junction-independent intestinal barrier loss in vivo. Methods in Molecular Biology. 2367, 249-271 (2021).
  15. Shen, L., Weber, C. R., Raleigh, D. R., Yu, D., Turner, J. R. Tight junction pore and leak pathways: A dynamic duo. Annual Review of Physiology. 73, 283-309 (2011).
  16. Monaco, A., Ovryn, B., Axis, J., Amsler, K. The epithelial cell leak pathway. International Journal of Molecular Sciences. 22 (14), 7677 (2021).
  17. Srinivasan, B., et al. TEER measurement techniques for in vitro barrier model systems. Journal of Laboratory Automation. 20 (2), 107-126 (2015).
  18. Kasendra, M., et al. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Scientific Reports. 8, 2871 (2018).
  19. Stroulios, G., et al. Culture methods to study apical-specific interactions using intestinal organoid models. Journal of Visualized Experiments. (169), e62330 (2021).
  20. Frost, T. S., Jiang, L., Lynch, R. M., Zohar, Y. Permeability of epithelial/endothelial barriers in transwells and microfluidic bilayer devices. Micromachines. 10 (8), 533 (2019).
check_url/kr/64215?article_type=t

Play Video

Cite This Article
Liebe, H., Schlegel, C., Cai, X., Golubkova, A., Leiva, T., Berry, W. L., Hunter, C. J. Determining Intestinal Permeability Using Lucifer Yellow in an Apical-Out Enteroid Model. J. Vis. Exp. (185), e64215, doi:10.3791/64215 (2022).

View Video