Summary

左冠状动脉结扎术:心肌梗死的外科小鼠模型

Published: August 09, 2022
doi:

Summary

这里介绍的是小鼠左冠状动脉永久结扎的外科手术。该模型可用于研究心肌梗死后的病理生理学和相关炎症反应。

Abstract

缺血性心脏病和随后的心肌梗塞(MI)是美国和世界各地死亡的主要原因之一。为了探究心肌梗死后的病理生理变化并设计未来的治疗方法,需要心肌梗死的研究模型。小鼠左冠状动脉(LCA)的永久性结扎是研究心肌梗死后心脏功能和心室重塑的流行模型。在这里,我们描述了一种侵入性较小、可靠且可重复的手术鼠 MI 模型,通过永久连接 LCA。我们的手术模式包括易于逆转的全身麻醉、不需要气管切开术的气管插管和开胸术。应进行心电图和肌钙蛋白测量以确保心肌梗死。 心肌梗死后第 28 天的超声心动图可识别心功能和心力衰竭参数。心脏纤维化的程度可以通过Masson的三色染色和心脏MRI进行评估。该心肌梗死模型有助于研究心肌梗死后的病理生理和免疫学改变。

Introduction

心血管疾病是一个重大的公共卫生问题,每年夺走1790万人的生命,占全球死亡率的31%1。最普遍的心血管异常类型是冠心病,心肌梗塞(MI)是冠心病的主要表现之一2。心肌梗死通常是由脆弱斑块破裂引起的冠状动脉血栓闭塞引起的3.由此产生的缺血导致受影响的心肌发生深刻的离子和代谢变化,以及收缩功能的快速下降。心肌梗死导致心肌细胞死亡,可进一步导致心室功能障碍和心力衰竭4

由于从MI5患者获得的组织稀缺,对患者心肌梗死的研究有限。因此,MI的小鼠模型可用于研究疾病机制以及开发潜在的治疗靶点。目前可用的MI小鼠模型包括不可逆缺血模型(LCA和消融方法)和再灌注模型(缺血/再灌注,I / R)6。小鼠左冠状动脉(LCA)的永久性结扎是最常用的方法,它模仿患者789中MI的病理生理学和免疫学。永久性心肌梗死也可以通过消融方法诱发,包括电损伤或冷冻损伤。消融方法能够在精确位置10产生均匀大小的梗死。另一方面,瘢痕形成、梗死形态和分子信号传导机制可能因消融方法而异1011。鼠I/R方法是另一个重要的MI模型,因为它代表了再灌注治疗的临床场景12。I/R 模型存在各种挑战,例如梗死大小可变、难以区分初始损伤的反应和再灌注6

虽然被广泛使用,但LCA结扎方法与低生存率和术后疼痛有关13。该协议展示了LCA结扎的小鼠手术MI模型,该模型涉及小鼠的准备和插管,LCA结扎,术后护理和MI的验证。 该方法不使用侵入性气管切开术14,而是采用气管插管。通过使用喉镜照亮口咽来对动物进行插管,使手术更容易、更安全、创伤更小15.在整个过程中,小鼠保持在呼吸机支持下并在异氟醚麻醉下。此外,进行超声心动图和Masson三色染色分别评估心肌梗死后的心脏功能和心肌纤维化。总体而言,该方法提供了一种可靠且可重复的MI手术鼠模型,可用于研究MI后的病理生理学和炎症。

Protocol

本研究方案由匹兹堡大学机构动物护理和使用委员会(IACUC)审查和批准。8只(假n = 4和MI n = 4)体重24-30g的1岁雌性C57BL / 6J小鼠用于这些实验。大约100%和至少80%的小鼠分别在前24小时和28天内存活。 1.小鼠的准备和气管插管 将珠子灭菌器(见 材料表)预热至250°C,并将高压灭菌的手术器械放入其中几分钟。 在含有3%异氟醚和1L / min氧气…

Representative Results

图1显示了假(图1A)和MI(图1B)小鼠超声心动图评估期间的代表性主动心电图和呼吸信号。在获取超声心动图数据之前,验证主动心电图和呼吸信号很重要。 图2显示了LCA结扎后28天心脏功能参数的超声心动图测量。图 2 显示了假心脏(图 2A)和 MI(图 2B</s…

Discussion

MI的小鼠模型在心血管研究实验室中越来越受欢迎,本研究描述了一种可重复且临床相关的MI模型。该协议以多种方式改进了LCA连接过程。首先,避免使用可注射的术前麻醉剂,例如甲苯噻嗪/氯胺酮或戊巴比妥钠1415 。仅使用异氟醚麻醉,这有助于提高动物存活率(术后28天存活率为>80%),最大限度地减少药物引起的并发症,并且与其他药物相比,心?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院拨款(R01HL143967,R01HL142629,R01AG069399和R01DK129339),AHA转型项目奖(19TPA34910142),AHA创新项目奖(19IPLOI34760566)和ALA创新项目奖(IA-629694)(PD)的支持。

Materials

22 G catheter needle Exel INT 26741 Thoracentesis
24 G catheter needle Exel INT 26746 Endotracheal intubation
4-0 nylon suture Covetrus 29263 Suturing of muscles and skin
8-0 nylon suture S&T 3192 Ligation of LAD
Anesthetic Vaporizers Vet equip VE-6047 Anesthetic support
Animal physiology monitor Fujifilm VEVO 3100 Monitor heart rate,respiration rate and body temperature
Betadine solution PBS animal health 11205 Antispetic
Buprenorphine Covetrus 55175 Analgesic
Disecting microscope OMANO OM2300S-V7 Binocular
Electric razor Wahl 79300-1001M Shaving
Electrode gel Parker Laboratories W60698L Electrically conductive gel
Ethanol Decon Laboratories 22-032-601 Disinfectant
Forceps FST 11065-07 Stainless Steel
Gauze Curity CAR-6339-PK Sterile
Heat lamp Satco S4998 Post surgery care
Heating pad Kent scientific Surgi-M Temperature control
Hot Bead sterilizer Germinator 500 11503 Sterilization of surgical instrument
Isoflurane Covetrus 29405 Anesthesia
Masson’s trichrome staining kit Thermoscientific 87019 Measurement of cardiac Fibrosis
Micro Needle Holder FST 12500-12 Stainless Steel
Micro scissors FST 15000-02 Stainless Steel
Ophthalmic ointment Dechra Puralube Vet Sterile occular lubricant
Scanning Gel Parker Laboratories Aquasonic 100 Aqueous ultrasound transmission gel
Scissors FST 14060-11 Stainless Steel
Small Animal Laryngoscope Penn-Century Model LS-2-M Illuminating the oropharynx
Small animal ventilator Harvard apparatus 557058 Ventilator support
Surgical light Cole parmer 41723 Illuminator Width (in): 7
Vevo 3100 preclinical imaging platform Fujifilm VEVO 3100 Echocardiography
VevoLAB software Fujifilm VevoLAB 3.2.6 Echocardiography data analysis

References

  1. Virani, S. S., et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 143 (8), 254 (2021).
  2. Mendis, S., et al. World Health Organization definition of myocardial infarction: 2008-09 revision. International Journal of Epidemiology. 40 (1), 139-146 (2011).
  3. Frangogiannis, N. G. Pathophysiology of myocardial infarction. Comprehensive Physiology. 5 (4), 1841-1875 (2011).
  4. Smit, M., Coetzee, A., Lochner, A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. Journal of Cardiothoracic and Vascular Anesthesia. 34 (9), 2501-2512 (2020).
  5. Johny, E., et al. Platelet mediated inflammation in coronary artery disease with Type 2 Diabetes patients. Journal of Inflammation Research. 14, 5131 (2021).
  6. Martin, T. P., et al. Preclinical models of myocardial infarction: from mechanism to translation. British Journal of Pharmacology. 179 (5), 770-791 (2022).
  7. De Villiers, C., Riley, P. R. Mouse models of myocardial infarction: comparing permanent ligation and ischaemia-reperfusion. Disease Models & Mechanisms. 13 (11), (2020).
  8. Vasamsetti, S. B., et al. Apoptosis of hematopoietic progenitor-derived adipose tissue-resident macrophages contributes to insulin resistance after myocardial infarction. Science Translational Medicine. 12 (553), (2020).
  9. Fernandez, B., et al. The coronary arteries of the C57BL/6 mouse strains: implications for comparison with mutant models. Journal of Anatomy. 212 (1), 12-18 (2008).
  10. van Amerongen, M. J., Harmsen, M. C., Petersen, A. H., Popa, E. R., van Luyn, M. J. Cryoinjury: a model of myocardial regeneration. Cardiovascular Pathology. 17 (1), 23-31 (2008).
  11. Lam, N. T., Sadek, H. A. Neonatal heart regeneration: comprehensive literature review. Circulation. 138 (4), 412-423 (2018).
  12. Heusch, G., Gersh, B. J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. European Heart Journal. 38 (11), 774-784 (2017).
  13. Srikanth, G., Prakash, P., Tripathy, N., Dikshit, M., Nityanand, S. Establishment of a rat model of myocardial infarction with a high survival rate: A suitable model for evaluation of efficacy of stem cell therapy. Journal of Stem Cells & Regenerative Medicine. 5 (1), 30-36 (2009).
  14. Lugrin, J., Parapanov, R., Krueger, T., Liaudet, L. Murine myocardial infarction model using permanent ligation of left anterior descending coronary artery. Journal of Visualized Experiments. (150), e59591 (2019).
  15. Muthuramu, I., Lox, M., Jacobs, F., De Geest, B. Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure. Journal of Visualized Experiments. (94), e52206 (2014).
  16. Pistner, A., Belmonte, S., Coulthard, T., Blaxall, B. C. Murine echocardiography and ultrasound imaging. Journal of Visualized Experiments. (42), e2100 (2010).
  17. Li, L., et al. Assessment of cardiac morphological and functional changes in mouse model of transverse aortic constriction by echocardiographic imaging. Journal of Visualized Experiments. (112), e54101 (2016).
  18. Vasamsetti, S. B., et al. Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation. Immunity. 49 (1), 93-106 (2018).
  19. Reichert, K., et al. Murine left anterior descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. Journal of Visualized Experiments. (122), e55353 (2017).
  20. Alwardt, C. M., Redford, D., Larson, D. F. General anesthesia in cardiac surgery: a review of drugs and practices. The Journal of Extra-Corporeal Technology. 37 (2), 227-235 (2005).
  21. Kolk, M. V., et al. LAD-ligation: a murine model of myocardial infarction. Journal of Visualized Experiments. (32), e1438 (2009).
  22. Wu, Y., Yin, X., Wijaya, C., Huang, M. -. H., McConnell, B. K. Acute myocardial infarction in rats. Journal of Visualized Experiments. (48), e2464 (2011).
  23. Kalogeris, T., Baines, C., Krenz, M., Korthuis, R. Chapter six-cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology. , 229-317 (2012).
  24. Scofield, S. L., Singh, K. Confirmation of myocardial ischemia and reperfusion injury in mice using surface pad electrocardiography. Journal of Visualized Experiments. (117), e54814 (2016).
  25. Yan, X., et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. Journal of Molecular and Cellular Cardiology. 62, 24-35 (2013).
  26. Xu, Q., et al. Protective effects of fentanyl preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion in rats. Brazilian Journal of Medical and Biological Research. 50 (2), 5286 (2017).
  27. Leuschner, F., et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. Journal of Experimental Medicine. 209 (1), 123-137 (2012).
  28. Leuschner, F., et al. Silencing of CCR2 in myocarditis. European Heart Journal. 36 (23), 1478-1488 (2015).
  29. Dutta, P., et al. E-selectin inhibition mitigates splenic HSC activation and myelopoiesis in hypercholesterolemic mice with myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology. 36 (9), 1802-1808 (2016).
  30. Jiang, C., et al. A modified simple method for induction of myocardial infarction in mice. Journal of Visualized Experiments. (178), e63042 (2021).
check_url/kr/64387?article_type=t

Play Video

Cite This Article
Johny, E., Dutta, P. Left Coronary Artery Ligation: A Surgical Murine Model of Myocardial Infarction. J. Vis. Exp. (186), e64387, doi:10.3791/64387 (2022).

View Video