Summary

Stérilisation par rayonnement gamma à faible dose pour les greffes trachéales décellularisées

Published: April 14, 2023
doi:

Summary

L’obtention de la stérilisation est essentielle pour la greffe de tissu trachéal. Nous présentons ici un protocole de stérilisation utilisant une irradiation gamma à faible dose qui est entièrement tolérée par les organes.

Abstract

L’un des principaux aspects clés pour assurer l’évolution correcte d’une greffe est la stérilité du milieu. La transplantation trachéale décellularisée consiste à implanter un organe qui était à l’origine en contact avec l’environnement, n’étant donc pas stérile dès le départ. Bien que le protocole de décellularisation (par exposition au détergent [dodécylsulfate de sodium à 2%), agitation continue et chocs osmotiques) soit effectué conformément aux mesures aseptiques, il ne permet pas la stérilisation. Par conséquent, l’un des principaux défis est d’assurer la stérilité avant l’implantation in vivo . Bien qu’il existe des protocoles établis de stérilisation par rayonnement gamma pour les matières inorganiques, il n’existe pas de telles mesures pour les matières organiques. De plus, les protocoles en place pour les matières inorganiques ne peuvent pas être appliqués aux matières organiques, car la dose de rayonnement établie (25 kGy) détruirait complètement l’implant. Cet article étudie l’effet d’une dose de rayonnement accrue dans une trachée de lapin décellularisée. Nous avons maintenu la plage de doses (kGy) et testé les doses croissantes jusqu’à ce que nous trouvions la dose minimale à laquelle la stérilisation est réalisée. Après avoir déterminé la dose, nous en avons étudié les effets sur l’organe, à la fois histologiquement et biomécaniquement. Nous avons déterminé que même si 0,5 kGy n’atteignait pas la stérilité, des doses de 1 kGy et de 2 kGy l’étaient, 1 kGy étant donc la dose minimale nécessaire pour obtenir la stérilisation. Les études microscopiques n’ont montré aucun changement pertinent par rapport aux organes non stérilisés. Les caractéristiques biomécaniques axiales n’ont pas été modifiées du tout, et seule une légère réduction de la force par unité de longueur que l’organe peut tolérer radialement a été observée. Nous pouvons donc conclure que 1 kGy permet une stérilisation complète de la trachée de lapin décellularisée avec des effets minimes, voire nuls, sur l’organe.

Introduction

La stérilisation d’un implant est une condition de base pour sa viabilité; En fait, les prothèses qui ont fait leurs preuves sont celles implantées dans des zones stériles (vaisseaux sanguins, cœur, os, etc.) 1. La trachée a deux surfaces : une surface en contact avec le milieu extérieur, qui n’est donc pas stérile, et une surface vers le médiastin, qui est stérile. Par conséquent, à partir du moment où la trachée est extraite, ce n’est pas un organe stérile. Bien que le processus de décellularisation ultérieur soit effectué dans des conditions stériles maximales, il ne s’agit pas d’une étape de stérilisation2. L’implantation de corps étrangers entraîne en soi un risque d’infection en raison du microenvironnement probactérien qu’elle produit3et un risque de transmission de la maladie allant jusqu’à 0,014% du donneur au receveur, même si le matériel a été stérilisé4. Pour assurer une vascularisation correcte de la trachée, dans presque tous les protocoles de transplantation expérimentale, elle subit d’abord un implant hétérotopique 5,6,7 dans une zone stérile (muscle, fascia, épiploon, sous-cutané, etc.); En effet, l’implantation d’un élément non stérile dans ce milieu entraînerait une infection de la zone3.

Il existe une gamme de stratégies possibles pour obtenir un implant stérile. L’utilisation du CO2supercritique a permis d’obtenir une stérilisation terminale 8,9. D’autres méthodes, telles que le rayonnement ultraviolet ou le traitement avec des substances telles que l’acide peracétique, l’éthanol, le peroxyde d’oxygène et l’eau électrolysée, ont obtenu des taux de réussite différents dans la stérilisation, presque toujours en fonction de leurs dosages, mais il a été démontré qu’elles affectent les caractéristiques biomécaniques des implants. En effet, certaines substances, comme l’oxyde d’éthylène, peuvent modifier substantiellement la structure de la matrice implantée et peuvent même provoquer des effets immunogènes indésirables. Pour cette raison, bon nombre de ces stratégies ne peuvent pas être appliquées aux modèles biologiques 2,10,11,12,13.

La stratégie de stérilisation la plus étudiée et acceptée est celle établie par la norme ISO 11737-1:2006 pour la stérilisation des dispositifs médicaux implantés chez l’homme, avec une dose de rayonnement gamma de 25 kGy. Cependant, ce règlement se concentre uniquement sur la stérilisation des éléments inertes et non biologiques14,15. De plus, les doses de radiothérapie dans le traitement radical du carcinome sont inférieures de trois ordres de grandeur à celles utilisées pour stériliser les dispositifs médicaux1. Dans cette optique, nous pouvons conclure que ladite dose tuerait non seulement le microbiote, mais détruirait et modifierait radicalement la structure biologique de l’implant. Il est également possible qu’il génère des lipides résiduels lors de la dégradation, ce qui peut potentiellement être cytotoxique et accélérer la dégradation enzymatique de l’échafaudage 13,14,15,16,17, même en utilisant des doses aussi faibles que 1,9 kGy et avec des dommages directement proportionnels à la dose de rayonnement reçue 17.

Ainsi, l’objectif de cet article est d’essayer d’identifier la dose de rayonnement qui permet d’obtenir un implant stérile avec un minimum d’effets nocifs causés par l’irradiation 2,18,19. La stratégie que nous avons suivie impliquait l’irradiation de trachées décellularisées et irradiées à différentes doses accrues dans une gamme de kilograys (0,5, 1, 2, 3 kGy, etc.), jusqu’à obtenir une culture négative. Des tests supplémentaires ont été effectués pour les doses qui ont obtenu des cultures négatives, afin de confirmer la stérilisation. Après avoir déterminé la dose minimale pour obtenir la stérilisation, l’impact structurel et biomécanique de l’irradiation sur la trachée a été vérifié. Tous les paramètres ont été comparés avec les trachées de lapin indigènes témoins. La stérilisation de la construction a ensuite été testée in vivo en implantant les trachées dans des lapins blancs néo-zélandais.

Protocol

La directive européenne 20170/63/UE pour le soin et l’utilisation des animaux de laboratoire a été respectée et le protocole d’étude a été approuvé par le Comité d’éthique de l’Université de Valence (loi 86/609/CEE et 214/1997 et Code 2018/VSC/PEA/0122 Type 2 du gouvernement de Valence, Espagne). 1. Décellularisation trachéale NOTE: La méthode de décellularisation a été signalée ailleurs20. <li…

Representative Results

DécellularisationLa coloration DAPI montre l’absence d’ADN, et aucune valeur d’ADN supérieure à 50 ng n’a été détectée dans aucune des trachées par électrophorèse, tous les fragments étant inférieurs à 200 bp20. Culture microbienneDeux des huit pièces soumises à 0,5 kGy ont montré un changement de couleur en moins de 1 semaine. Aucune des pièces irradiées à 1 kGy et 2 kGy n’a montré de changement de…

Discussion

Il existe plusieurs stratégies de stérilisation. LeCO2supercritique pénètre complètement dans les tissus, acidifiant le milieu et déconstruisant la bicouche phospholipide cellulaire par simple élimination par dépressurisation de l’implant 8,14,25. Le rayonnement ultraviolet a également été utilisé et son efficacité dans la trachée de rongeurs a été publiée, bien qu’il n’y ait que quelques rappor…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Cet article a été soutenu par la subvention 2018 de la Société espagnole de chirurgie thoracique à l’étude multicentrique nationale [numéro 180101 attribué à Néstor J.Martínez-Hernández] et PI16-01315 [décerné à Manuel Mata-Roig] par l’Instituto de Salud Carlos III. CIBERER est financé par le VI Plan national de R&D&I 2018-2011, Iniciativa Ingenio 2010, le Programme de consolidation, les Actions CIBER et l’Instituto de Salud Carlos III, avec l’aide du Fonds européen de développement régional.

Materials

6-0 nylon monofilament suture  Monosoft. Covidien; Mansfield, MA, USA SN-5698G
Amphotericin B 5% Gibco Thermo Fisher Scientific; Waltham, MA USA 15290018
Bioanalyzer Agilent, Santa Clara, CA, USA G2939BA
Buprenorphine Buprex. Reckitt Benckiser Healthcare; Hull, Reino Unido N02AE01
Compression desktop UTM Microtest, Madrid, Spain EM1/10/FR
Cryostate Leyca CM3059, Leyca Biosystems, Wetzlar, Alemania CM3059
DAPI (4',6-diamino-2-phenylindole)  DAPI. Sigma-Aldrich, Missouri, USA  D9542
Dimethyl sulfoxide (DMSO) Sigma-Aldrich; MO, USA D2650
DMEM  Thermo Fisher Scientific; Waltham, MA, USA 11965084
DNA extraction kit DNeasy extraction kit Quiagen, Hilden, Germany 4368814
Enrofloxacin, 2.5% Boehringer Ingelheim, Ingelheim am Rhein, Germany 0035-0002
Fetal bovine serum (FBS) GE Healthcare Hyclone; Madrid, Spain SH20898.03IR
Fluorescence microscope Leyca DM2500 (Leica, Wetzlar, Germany) DM2500??
Freezing Container  Mr Frosty. Thermo Fisher; Madrid, Spain  5100-0001
Isofluorane Isoflo; Proyma Ganadera; Ciudad Real, Spain  8.43603E+12
Ketamin Imalgene. Merial; Toulouse, Francia BOE127823
Linear accelerator  "True Beam". Varian, Palo Alto, California, USA H191001
Magnetic stirrer Orbital Shaker PSU-10i. Biosan; Riga, Letonia BS-010144-AAN
Meloxicam 5 mg/ml Boehringer Ingelheim, Ingelheim am Rhein, Germany 6283-MV
OCT (Optimal Cutting Temperature Compound) Fischer Scientific, Madrid, Spain 12678646
Penicillin-streptomycin 5% Gibco Thermo Fisher Scientific; Waltham, MA USA 15140122
Pentobarbital sodium Dolethal. Vetoquinol; Madrid, España 3.60587E+12
Phosphate buffered saline (PBS) Sigma-Aldrich; MO, USA P2272
Propofol Propofol Lipuro. B. Braun Melsungen AG; Melsungen, Alemania G 151030
Proteinase K Gibco Thermo Fisher Scientific; Waltham, Massachussetts, USA S3020
PVC hollow tubes Cristallo Extra; FITT, Sandrigo, Italy hhdddyyZ
PVC stent  ArgyleTM Medtronic; Istanbul, Turkey 019 5305 1
R software, Version 3.5.3 R Core R Foundation for Statistical Computing R 3.5.3
Sodium dodecyl sulfate (SDS) Sigma-Aldrich; MO, USA 8,17,034
Spectrophotometer Nanodrop, Life Technologies; Isogen Life Science. Utrech, Netherlands ND-ONEC-W
Spreadsheet Microsoft Excel for Mac, Version 16.23, Redmond, WA, USA 2864993241
Traction Universal Testing Machine  Testing Machines, Veenendaal, Netherlands 84-01
UTM Software TestWorks 4, MTS Systems Corporation, Eden Prairie, MN, USA  100-093-627 F
VECTASHIELD Mounting Medium  Vector Labs, Burlingame; CA; USA H-1000-10
Xylacine Xilagesic. Calier; Barcelona, España 20102-003

References

  1. Ch’ng, S., et al. Reconstruction of the (Crico)trachea for malignancy in the virgin and irradiated neck. Journal of Plastic, Reconstructive & Aesthetic Surgery. 65 (12), 1645-1653 (2012).
  2. Johnson, C. M., Guo, D. H., Ryals, S., Postma, G. N., Weinberger, P. M. The feasibility of gamma radiation sterilization for decellularized tracheal grafts. Laryngoscope. 127 (8), 258-264 (2017).
  3. de Donato, G., et al. Prosthesis infection: prevention and treatment. The Journal of Cardiovascular Surgery. 55 (6), 779-792 (2014).
  4. Vangsness, C. T., Dellamaggiora, R. D. Current safety sterilization and tissue banking issues for soft tissue allografts. Clinics in Sports Medicine. 28 (2), 183-189 (2009).
  5. Den Hondt, M., Vanaudenaerde, B. M., Delaere, P., Vranckx, J. J. Twenty years of experience with the rabbit model, a versatile model for tracheal transplantation research. Plastic and Aesthetic Research. 3 (7), 223-230 (2016).
  6. Hysi, I., et al. Successful orthotopic transplantation of short tracheal segments without immunosuppressive therapy. European Journal of Cardiothoracic Surgery. 47 (2), 54-61 (2015).
  7. Wurtz, A., et al. Tracheal reconstruction with a composite graft: Fascial flap-wrapped allogenic aorta with external cartilage-ring support. Interactive Cardiovascular and Thoracic Surgery. 16 (1), 37-43 (2013).
  8. White, A., Burns, D., Christensen, T. W. Effective terminal sterilization using supercritical carbon dioxide. Journal of Biotechnology. 123 (4), 504-515 (2006).
  9. Qiu, Q. Q., et al. Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. 91 (2), 572-578 (2009).
  10. Lange, P., et al. Pilot study of a novel vacuum-assisted method for decellularization of tracheae for clinical tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine. 11 (3), 800-811 (2017).
  11. Wedum, A. G., Hanel, E., Phillips, G. B. Ultraviolet sterilization in microbiological laboratories. Public Health Reports. 71 (4), 331-336 (1956).
  12. Hennessy, R. S., et al. Supercritical carbon dioxide-based sterilization of decellularized heart valves. JACC. Basic to Translational Science. 2 (1), 71-84 (2017).
  13. Crapo, P. M., Gilbert, T. W., Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials. 32 (12), 3233-3243 (2011).
  14. Balestrini, J. L., et al. Sterilization of lung matrices by supercritical carbon dioxide. Tissue Engineering. Part C, Methods. 22 (3), 260-269 (2016).
  15. AENOR. UNE-EN. ISO 11737-1:2006. Esterilización de productos sanitarios. Métodos biológicos. Parte 1: Determinación de la población de microorganismos en los productos. AENOR. UNE-EN. , (2006).
  16. Uriarte, J. J., et al. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation. Journal of the Mechanical Behavior of Biomedical Materials. 40, 168-177 (2014).
  17. Sun, W. Q., Leung, P. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomaterialia. 4 (4), 817-826 (2008).
  18. Nguyen, H., et al. Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts. Bone. 57 (1), 194-200 (2013).
  19. Helder, M. R. K., et al. Low-dose gamma irradiation of decellularized heart valves results in tissue injury in vitro and in vivo. The Annals of Thoracic Surgery. 101 (2), 667-674 (2016).
  20. Martínez-Hernández, N. J., et al. Decellularized tracheal prelamination implant: A proposed bilateral double organ technique. Artificial Organs. 45 (12), 1491-1500 (2021).
  21. Feldman, A. T., Wolfe, D. Tissue processing and hematoxylin and eosin staining. Methods in Molecular Biology. 1180, 31-43 (2014).
  22. López Caballero, J., Peña, M., De Federico, M. Coloraciones para fibras colágenas y elásticas del tejido conjuntivo. Coloraciones para sustancia amiloidea. Laboratorio de Anatomía Patologica. , 175-195 (1993).
  23. Martínez-Hernández, N. J., et al. A standardised approach to the biomechanical evaluation of tracheal grafts. Biomolecules. 11 (10), 1461 (2021).
  24. Kajbafzadeh, A. M., Javan-Farazmand, N., Monajemzadeh, M., Baghayee, A. Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue Engineering. Part C, Methods. 19 (8), 642-651 (2013).
  25. Wehmeyer, J. L., Natesan, S., Christy, R. J. Development of a sterile amniotic membrane tissue graft using supercritical carbon dioxide. Tissue Engineering. Part C, Methods. 21 (7), 649-659 (2015).
  26. Ross, E. A., et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis. 8 (2), 49-55 (2012).
check_url/kr/64432?article_type=t

Play Video

Cite This Article
Martínez-Hernández, N. J., Milián-Medina, L., Mas-Estellés, J., Monroy-Antón, J. L., López-Villalobos, J. L., Hervás-Marín, D., Roig-Bataller, A., Mata-Roig, M. Low-Dose Gamma Radiation Sterilization for Decellularized Tracheal Grafts. J. Vis. Exp. (194), e64432, doi:10.3791/64432 (2023).

View Video