Summary

具有长距离纤维排列的微工程3D胶原蛋白水凝胶

Published: September 07, 2022
doi:

Summary

该协议演示了使用沿流体流动方向改变几何形状的微流体通道来产生拉伸应变(拉伸)以在3D胶原水凝胶(厚度<250μm)中对齐纤维。由此产生的对齐延伸几毫米,并受拉伸应变率的影响。

Abstract

排列的胶原I(COL1)纤维引导肿瘤细胞运动,影响内皮细胞形态,控制干细胞分化,是心脏和肌肉骨骼组织的标志。为了研究细胞对 体外排列微环境的反应,已经开发了几种协议来生成具有定义纤维排列的COL1基质,包括磁性,机械,基于细胞和微流体方法。其中,微流体方法提供了先进的功能,例如精确控制流体流动和细胞微环境。然而,用于高级 体外 培养平台生成对齐COL1基质的微流体方法仅限于COL1纤维的薄“垫”(厚度<40μm),其延伸距离小于500μm,不利于3D细胞培养应用。在这里,我们提出了一种协议来制造3D COL1矩阵(厚度为130-250μm),该矩阵具有微流体装置中定义的纤维排列的毫米级区域。该平台提供先进的细胞培养功能,通过直接访问用于细胞培养的微工程基质来模拟结构化组织微环境。

Introduction

细胞驻留在称为细胞外基质(ECM)的复杂3D纤维网络中,其中大部分由结构蛋白I型胶原蛋白(COL1)组成12。ECM的生物物理特性为细胞提供指导线索,作为回应,细胞重塑ECM微结构345。这些相互的细胞-基质相互作用可以产生排列的COL1纤维结构域6,其促进肿瘤环境中的血管生成和细胞侵袭7,89并影响细胞形态10,11,12极化13和分化14排列的胶原纤维还可以促进伤口愈合15,在组织发育中起关键作用16,并有助于长距离细胞通讯17,18。因此,在体外复制天然COL1纤维微结构是开发结构化模型以研究细胞对对齐微环境的反应的重要一步。

微流控细胞培养系统已被确立为开发微生理系统(MPS)的首选技术1920,212223利用有利的微尺度缩放效应,这些系统提供对流体流动的精确控制,支持机械力的受控引入,并定义微通道21,24252627内的生化微环境。MPS平台已被用于模拟组织特异性微环境并研究多器官相互作用28。同时,水凝胶已被广泛探索,以概括在体内观察到的ECM的3D力学和生物学影响2930随着越来越重视将3D培养与微流体平台相结合,许多方法可以在微流体装置中结合COL1水凝胶313233。然而,在微流体通道中对齐COL1水凝胶的方法仅限于<1mm宽的通道中的薄2D“垫”(厚度<40μm),在对齐的3D微环境中模拟细胞反应的潜力有限31343536

为了在微流体系统中实现对齐的3D COL1水凝胶,已经表明,当自组装COL1溶液暴露于局部拉伸流(沿流向的速度变化)时,所得COL1水凝胶显示出与它们经历的拉伸应变率的大小成正比的纤维取向程度3738.该协议中的微通道设计在两个方面是独一无二的;首先,分段设计将局部拉伸应变引入COL1解决方案,其次,其“两件式”结构允许用户对齐COL1光纤,然后拆卸通道以开放格式直接访问对齐的光纤。这种方法可以进一步用于开发模块化微流体平台,开发具有有序COL1矩阵的微生理系统。以下协议描述了制造分段微通道的过程,并详细介绍了使用这些通道来对齐牛 atelo COL1。该协议还提供了以开放孔形式在COL1上培养细胞的说明,并讨论了使用模块化磁性基础层向平台添加功能。

Protocol

1. 两件式通道和模块化平台底座的制造 注意:微流体通道由两部分构成 – 微流体通道“切口”,它是从规定厚度的聚二甲基硅氧烷(PDMS)片上切割的剃刀,以及通道盖,可逆地粘合到切口并形成通道。通道被聚甲基丙烯酸甲酯(PMMA)框架包围,该框架将充当介质储液器(图1)。PMMA框架还可用于磁性锁存专用模块以增加功能。 PDMS ?…

Representative Results

当自组装COL1解流过横截面积减小的通道时,COL1解的流速(v x)沿两段之间的收缩长度(∂x)局部增加一个量级∂v x,导致拉伸应变率(ε̇),其中ε̇ = ∂v x/∂x。拉伸应变率可以通过流体速度计算,流体速度是使用粒子图像测速法(PIV)测量的,如图2所示。 先前,已经表明局部拉伸应变促进长距离COL1纤维排列37…

Discussion

已经使用磁性方法、机械应变的直接应用和微流体技术描述了生成具有排列纤维的 COL1 矩阵的协议47。微流体方法通常用于创建微生理系统,因为它们具有明确定义的流动和运输特性,可以精确控制生化微环境。由于排列的COL1纤维在病理生理过程中(如伤口愈合,肿瘤细胞侵袭和组织发育)提供了关键的指导性线索,因此在微流体系统中生成排列的COL1基质是朝着开发生物学相关…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院的部分支持,奖励号为R21GM143658,美国国家科学基金会的资助号为2150798。内容完全由作者负责,不一定代表资助机构的官方观点。

Materials

(3-Aminopropyl)triethoxysilane, 99% (APTES) Sigma Aldrich 440140-100ML
20 Gauge IT Series Angled Dispensing Tip Jensen Global JG-20-1.0-90
3/16" dia. x 1/16" thick Nickel Plated Magnet KJ Magnetics D31
3M (TC) 12X12-6-467MP DigiKey 3M9726-ND
ACETONE ACS REAGENT ≥99.5% Signa Aldrich 179124-4L
BD-20AC LABORATORY CORONA TREATER Electro-Technic Products 12051A
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent Grade, Alfa Aesar VWR AAJ64100-09
Clear cast acrylic sheet McMaster-Carr 8560K181
Corning 100 mL Trypsin 10x, 2.5% Trypsin in HBSS [-] calcium, magnesium, phenol red, Porcine Parvovirus Tested VWR 45000-666
Countess II Automated Cell Counter Thermo Fisher Scientific AMQAX1000
CT-FIRE software LOCI – University of Wisconsin
EGM-2 Endothelial Cell Growth Medium-2 BulletKit, (CC-3156 & CC-4176), Lonza CC-3162, 500 mL Lonza CC-3162
Glutaraldehyde 50% in aqueous solution, Reagent Grade, Packaging=HDPE Bottle, Size=100 mL VWR VWRV0875-100ML
Graphtec CELITE-50 Graphtec CE LITE-50
HEPES (1 M) Thermo Fisher Scientific 15-630-080
High-Purity Silicone Rubber .010" Thick, 6" X 8" Sheet, 55A Durometer McMaster-Carr 87315K62
Human Umbilical Vein Endothelial cells Thermo Fisher Scientific C0035C
Invitrogen Trypan Blue Stain (0.4%) Thermo Fisher Scientific T10282
Isopropanol Fisher Scientific A4154
Laser cutter Full Spectrum 20×12 H-series
Microfluidics Syringe pump New Era Syringe Pumps NE-1002X
Microman E Single Channel Pipettor, Gilson, Model M1000E Gilson FD10006
Molecular Probes Alexa Fluor 488 Phalloidin Thermo Fisher Scientific A12379
Molecular Probes Hoechst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific H3570
Nutragen Bovine Atelo Collagen Advanced BioMatrix 5010-50ML
Pbs (10x), pH 7.4 VWR 70011044.00
PBS pH 7.4 Thermo Fisher Scientific 10010049.00
Phosphate-buffered saline (PBS, 10x), with Triton X-100 Alfa Aesar J63521
Replacement carrier sheet for graphtec craft ROBO CC330L-20 USCUTTER GRPCARSHTN
Restek Norm-Ject Plastic Syringe 1 mL Luer Slip Restek 22766.00
Silicon wafer University wafer 452
Sodium Hydroxide, ACS, Packaging=Poly Bottle, Size=500 g VWR BDH9292-500G
Sylgard 184 VWR 102092-312
Thermo Scientific Pierce 20x PBS Tween 20 Thermo Fisher Scientific 28352.00

References

  1. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (24), 4195-4200 (2010).
  2. Bosman, F. T., Stamenkovic, I. Functional structure and composition of the extracellular matrix. The Journal of Pathology. 200 (4), 423-428 (2003).
  3. Cox, T. R., Erler, J. T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Disease Models & Mechanisms. 4 (2), 165-178 (2011).
  4. Cross, V. L., et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials. 31 (33), 8596-8607 (2010).
  5. Lu, P., Takai, K., Weaver, V. M., Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology. 3 (12), 005058 (2011).
  6. Piotrowski-Daspit, A. S., Nerger, B. A., Wolf, A. E., Sundaresan, S., Nelson, C. M. Dynamics of tissue-induced alignment of fibrous extracellular matrix. Biophysical Journal. 113 (3), 702-713 (2017).
  7. Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine. 4 (1), 38 (2006).
  8. Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Medicine. 6 (1), 11 (2008).
  9. Szulczewski, J. M., et al. Directional cues in the tumor microenvironment due to cell contraction against aligned collagen fibers. Acta Biomaterialia. 129, 96-109 (2021).
  10. Aubin, H., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials. 31 (27), 6941-6951 (2010).
  11. Gruschwitz, R., et al. Alignment and cell-matrix interactions of human corneal endothelial cells on nanostructured collagen type I matrices. Investigative Ophthalmology & Visual Science. 51 (12), 6303-6310 (2010).
  12. Wang, W. Y., et al. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioengineering. 2 (4), 046107 (2018).
  13. Wang, W. Y., Lin, D., Jarman, E. H., Polacheck, W. J., Baker, B. M. Functional angiogenesis requires microenvironmental cues balancing endothelial cell migration and proliferation. Lab on a Chip. 20 (6), 1153-1166 (2020).
  14. Lanfer, B. The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials. 30 (30), 5950-5958 (2009).
  15. Brauer, E., et al. Collagen fibrils mechanically contribute to tissue contraction in an in vitro wound healing scenario. Advanced Science. 6 (9), 1801780 (2019).
  16. Ingber, D. E. From mechanobiology to developmentally inspired engineering. PhilosophicalTransactions of the Royal Society B: Biological Sciences. 373 (1759), 20170323 (2018).
  17. Wang, H., Abhilash, A. S., Chen, C. S., Wells, R. G., Shenoy, V. B. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophysical Journal. 107 (11), 2592-2603 (2014).
  18. Reinhart-King, C. A., Dembo, M., Hammer, D. A. Cell-cell mechanical communication through compliant substrates. Biophysical Journal. 95 (12), 6044-6051 (2008).
  19. Ahadian, S., et al. Organ-on-a-chip platforms: A convergence of advanced materials, cells, and microscale technologies. Advanced Healthcare Materials. 7 (2), 1700506 (2018).
  20. Hou, X., et al. Interplay between materials and microfluidics. Nature Reviews Materials. 2 (5), 17016 (2017).
  21. Abhyankar, V. V., et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab on a Chip. 8 (9), 1507-1515 (2008).
  22. Abhyankar, V. V., Wu, M., Koh, C. Y., Hatch, A. V. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces. PLoS One. 11 (5), 0156341 (2016).
  23. Williams, M. J., et al. A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines. 10 (6), 360 (2019).
  24. Hsu, M. C., et al. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Scientific Reports. 12, 10769 (2022).
  25. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J., Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab on a Chip. 12 (12), 2156-2164 (2012).
  26. Abhyankar, V. V., Lokuta, M. A., Huttenlocher, A., Beebe, D. J. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip. 6 (3), 389-393 (2006).
  27. Hasan, M. R., et al. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomedical Physics & Engineering Express. 4 (2), 025015 (2018).
  28. Meyvantsson, I., Beebe, D. J. Cell culture models in microfluidic systems. Annual Review of Physical Chemistry. 1, 423-449 (2008).
  29. Ma, Y., et al. Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics. Advanced Functional Materials. 31 (24), 2100848 (2021).
  30. Ma, Y., et al. 3D spatiotemporal mechanical microenvironment: A hydrogel-based platform for guiding stem cell fate. Advanced Materials. 30 (49), 1705911 (2018).
  31. Lee, P., Lin, R., Moon, J., Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical Microdevices. 8 (1), 35-41 (2006).
  32. Del Amo, C., Borau, C., Movilla, N., Asín, J., García-Aznar, J. M. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integrative Biology. 9 (4), 339-349 (2017).
  33. Shi, N., et al. A 3D, magnetically actuated, aligned collagen fiber hydrogel platform recapitulates physical microenvironment of myoblasts for enhancing myogenesis. Small Methods. 5 (6), 2100276 (2021).
  34. Lanfer, B., et al. Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials. 29 (28), 3888-3895 (2008).
  35. Saeidi, N., Sander, E. A., Ruberti, J. W. Dynamic shear-influenced collagen self-assembly. Biomaterials. 30 (34), 6581-6592 (2009).
  36. Saeidi, N., Sander, E. A., Zareian, R., Ruberti, J. W. Production of highly aligned collagen lamellae by combining shear force and thin film confinement. Acta Biomaterialia. 7 (6), 2437-2447 (2011).
  37. Ahmed, A., et al. Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality. Advanced Materials Technologies. 6 (4), 2001186 (2021).
  38. Ahmed, A., et al. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication. 14 (3), 035019 (2022).
  39. Mansouri, M., et al. The modular µSiM reconfigured: Integration of microfluidic capabilities to study in vitro barrier tissue models under flow. Advanced Healthcare Materials. , (2022).
  40. Paten, J. A., et al. Flow-induced crystallization of collagen: a potentially critical mechanism in early tissue formation. ACS Nano. 10 (5), 5027-5040 (2016).
  41. Liu, Y., Eliceiri, K. W. Quantifying fibrillar collagen organization with curvelet transform-based tools. Journal of Visualized Experiments. (165), e61931 (2020).
  42. Bredfeldt, J. S., et al. Automated quantification of aligned collagen for human breast carcinoma prognosis. Journal of Pathology Informatics. 5 (1), 28 (2014).
  43. Bredfeldt, J. S., et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. Journal of Biomedical Optics. 19 (1), 016007 (2014).
  44. Carey, S. P., et al. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integrative Biology. 8 (8), 821-835 (2016).
  45. Carey, S. P., Kraning-Rush, C. M., Williams, R. M., Reinhart-King, C. A. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 33 (16), 4157-4165 (2012).
  46. Ahmed, A., et al. Engineering fiber anisotropy within natural collagen hydrogels. AmericanJournal of Physiology-Cell Physiology. 320 (6), 1112-1124 (2021).
  47. Mohammadi, H., Janmey, P. A., McCulloch, C. A. Lateral boundary mechanosensing by adherent cells in a collagen gel system. Biomaterials. 35 (4), 1138-1149 (2014).
check_url/kr/64457?article_type=t

Play Video

Cite This Article
Ahmed, A., Joshi, I. M., Goulet, M. R., Vidas, J. A., Byerley, A. M., Mansouri, M., Day, S. W., Abhyankar, V. V. Microengineering 3D Collagen Hydrogels with Long-Range Fiber Alignment. J. Vis. Exp. (187), e64457, doi:10.3791/64457 (2022).

View Video