Summary

从植物叶片组织和蓝藻中分离出塑体球脂滴

Published: October 06, 2022
doi:

Summary

提出了一种快速有效的方案,用于分离与各种光合生物相关的质球脂滴。成功制备分离的质体球是蛋白质组学和脂质组学分析等详细分子研究之前的关键第一步。

Abstract

塑性球脂滴是植物叶绿体和蓝藻的动态亚区室。它们在光合作用物种中无处不在,被认为在快速变化的环境条件下在类囊体膜的适应和重塑中起着核心作用。分离高纯度质体球的能力极大地促进了通过蛋白质组、脂质组和其他方法进行的研究。使用高纯度和高产量的质体球,可以研究它们的脂质和蛋白质组成、酶活性和蛋白质拓扑以及其他可能的分子特征。本文提出了一种从植物叶片组织叶绿体中分离质体球的快速有效的方案,并介绍了从玉米叶、复活植物的干燥叶组织 Eragrostis nindensis 和蓝藻集 胞藻 中分离质球和相关脂滴结构的方法学变化 PCC 6803。分离依赖于这些富含脂质的颗粒的低密度,这有助于通过蔗糖密度浮选纯化它们。这种方法将在研究来自不同物种的质体球方面证明是有价值的。

Introduction

目前对质体球组成和功能的理解是通过详细的蛋白质组学和脂质组学研究出现的12345。这种研究得到了快速有效的分离方法的极大帮助,该方法依赖于其非常低的密度,使用蔗糖梯度进行有效分离。从山毛榉树(Fagus sylvatica),苏格兰扫帚(Sarothamnus scoparius),洋葱(葱属cepa),菠菜(Spinacia oleracea),三色堇(中提琴三色),胡椒(辣椒)和豌豆(Pisum sativum)等物种中实现了质体球分离的初始方法678910111213.Ytterberg等人后来提出了一种以更有效和更好的产量方式分离叶绿体质体球的更新方法314。虽然最初用于研究拟南芥叶叶绿体的质球,但我们已经成功地将这种更新的方法用于其他植物物种的健康叶组织,包括单子叶植物和双子叶植物,包括玉米(Zea mays)、番茄(Solanum lycopersicum)、爱情草(Eragrostis nindensis)、紫色假凤梨(Brachypodium distachyon)和野生烟草(Nicotiana benthamiana;未发表的结果)。此外,分离方法已成功适应蓝藻的质体球,包括集胞藻属PCC 6803和Anabaena sp. PCC 712015,以及复活植物E. nindensis的干燥叶组织。

健康叶组织的叶绿体质体球与类囊体膜物理连接16。尽管有这种物理连续性,两个叶绿体亚区室保持不同的脂质和蛋白质组成,尽管已经提出了两个区室之间脂质和蛋白质的调节交换2,4,171819。事实上,最近提出了一个有趣的半融合模型,用于叶绿体和细胞质19之间中性脂质的运输。由于质体球和类囊体的物理连续性,健康叶组织的分离方法从收集颗粒粗类囊体制剂开始,随后对其进行超声处理以将质体球与类囊体分离,这与用于分离胞质脂滴的方法相反20.然后在蔗糖垫上进行超速离心,然后将低密度质体球向上漂浮通过蔗糖,有效地将它们与类囊体、细胞核和其他高密度材料分离。相比之下,蓝藻中的质体球以及干燥的叶组织中的质体球显然以自由漂浮的形式存在于体内。因此,它们的分离涉及直接漂浮在蔗糖梯度上。本文演示了从健康叶片组织中分离的方法,并进一步展示了可用于从干燥的叶组织或蓝藻培养物中分离质体球的两种变体,极大地扩展了可以研究塑料球的生理广度和进化背景。

分离的质体球随后可用于任意数量的下游分析,以研究分子特征。我们使用从拟南芥叶组织中分离出的质体球在不同环境条件或基因型下进行广泛的蛋白质组学和脂质组学分析,证明了蛋白质和脂质组成的选择性修饰以适应压力242122此外,已经进行了体激酶测定,该测定已证明与分离的质体球相关的反式磷酸化活性22,已使用天然凝胶电泳21研究了蛋白质组分的寡聚状态,并且已经进行了蛋白酶剃须测定23

这种方法的主要优点是程序的相对速度。根据我们的经验,下面概述的协议可以在大约4小时内完全完成。已经描述了从叶组织中分离质体球的替代方法,该方法允许同时分离其他叶绿体亚区室24。当需要或需要与其他叶绿体亚区室进行定量比较时,这种替代方法提供了一些明显的优势。然而,这种替代方法也更加繁琐,并且将从相当数量的叶组织中提供显着降低的分离质体球的产量。当以质体球为重点研究时,此处概述的方法论是最佳选择。尽管如此,在样品制备过程中可以收集总叶和粗类囊体等分试样,强烈建议这样做,以便有参考样品进行后续比较。

Protocol

1.粗质体球分离 从非胁迫玉米叶片组织中提取粗质体球获得6株约3周龄且接近V5生长期的健康玉米幼苗,重约120克。 剪掉茎基部的所有叶子,迅速将它们浸泡在冰浴中,然后运送到冷藏室。 在绿色安全灯下工作,从冰浴中取出玉米叶,然后用剪刀将它们剪成小块(约 5 厘米 x 5 厘米)。 在商用搅拌机中,在350 mL研磨缓冲液中轻轻但彻底研磨一半?…

Representative Results

完成协议的步骤1后,应该能够容易地看到相当数量的质体球/脂滴材料漂浮在蔗糖垫的顶层(或附近)(图1B-C)。在这个阶段也可以收集其他馏分。例如,类囊体将被沉淀,并可以用培养基R 0.2重新悬浮以进行后续分析。随后离心后,将在蔗糖梯度表面或附近获得纯化的质体球,如图1A,C所示。已经看到在某些情?…

Discussion

为了最大限度地减少材料的生理/生化变化并保护某些光不稳定和热不稳定的异戊烯基脂质色素,这些色素是塑料球的丰富成分,在4°C下进行隔离并避光至关重要。如上所述,初始步骤是在冷室的安全灯下使用绿色发光灯泡进行的。在实验室中进行的后续步骤是在昏暗的灯光下,并使用冰或冷藏离心。出于类似的原因,加入新鲜蛋白酶抑制剂(如果有兴趣研究蛋白质的磷酸化调节,则包括磷酸酶?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Lundquist实验室小组的研究得到了NSF(MCB-2034631)和美国农业部(MICL08607)对P.K.L.的资助。作者感谢Carrie Hiser博士(MSU)对蓝藻质体球分离方法开发的支持。

Materials

AEBSF Milipore Sigma P7626
Antipain.2HCl Bachem H-1765.0050BA
Aprotinin Milipore Sigma A6106
Ascorbate BDH BDH9242
Bestatin Sigma Aldrich B8385
Beta-Glycerophosphate. 2Na5H2O EMD Millipore 35675
Bovine Serum Albumin Proliant Biological 68700
Chymostatin Sigma Aldrich C7268
Eragrostis nindensis N/A N/A
E-64 Milipore Sigma E3132
French Pressure cell (model FA-079) SLM/Aminco N/A
HEPES Sigma Aldrich H3375
Leupeptin Sigma Aldrich L2884
Magnesium Chloride Sigma Aldrich M8266
Multitron shaking incubator Infors HT N/A
Phospho-ramidon.2 Na Sigma Aldrich R7385
Potassium Hydroxide Fisher Chemicals M16050
Reduced Cysteine MP Biochemicals 101444
Sodium Fluoride Sigma Aldrich S7920
Sodium Ortho-vanadate Sigma Aldrich 450243
Sodium Pyrophosphate · 10H2O Sigma Aldrich 3850
Sorbitol Sigma Aldrich S3889
Sucrose Sigma Aldrich S9378
Sylvania 15 W fluorescent Gro-Lux tube light bulb, 18" Walmart N/A
Synechocystis sp. PCC 6803 N/A N/A
Optima MAX-TL Ultracentrifuge Beckman Coulter A95761
Waring Blender (1.2 L) VWR 58977-227 Commercial blender
Zea mays N/A N/A

References

  1. Lundquist, P. K., Shivaiah, K. K., Espinoza-Corral, R. Lipid droplets throughout the evolutionary tree. Progress in Lipid Research. 78, 101029 (2020).
  2. Lundquist, P. K., et al. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiology. 158 (3), 1172-1192 (2012).
  3. Ytterberg, A. J., Peltier, J. B., van Wijk, K. J. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiology. 140 (3), 984-997 (2006).
  4. Lundquist, P. K., et al. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. The Plant Cell. 25 (5), 1818-1839 (2013).
  5. Vidi, P. A., et al. Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. Journal of Biological Chemistry. 281 (16), 11225-11234 (2006).
  6. Lichtenthaler, H. K. Plastoglobuli and the fine structure of plastids. Endeavour. 27 (102), 144-149 (1965).
  7. Lichtenthaler, H. K., Peveling, E. Plastoglobuli in different types of plastids from Allium cepa L. Planta. 72 (1), 1-13 (1966).
  8. Lichtenthaler, H. K. Die Plastoglobuli von Spinat, ihre Gröβe, Isolierung und Lipochinonzusammensetzung. Protoplasma. 68 (1-2), 65-77 (1969).
  9. Lichtenthaler, H. K. Plastoglobuli and lipoquinone content of chloroplasts from Cereus peruvianus (L) Mill. Planta. 87 (4), 304-310 (1969).
  10. Simpson, D. J., Baqar, M. R., Lee, T. H. Chromoplast ultrastructure of Capsicum carotenoid mutants I. Ultrastructure and carotenoid composition of a new mutant. Zeitschrift für Pflanzenphysiologie. 83 (4), 293-308 (1977).
  11. Hansmann, P., Sitte, P. Composition and molecular structure of chromoplast globules of Viola tricolor. Plant Cell Reports. 1 (3), 111-114 (1982).
  12. Steinmuller, D., Tevini, M. Composition and function of plastoglobuli : I. Isolation and purification from chloroplasts and chromoplasts. Planta. 163 (2), 201-207 (1985).
  13. Kessler, F., Schnell, D., Blobel, G. Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta. 208 (1), 107-113 (1999).
  14. Grennan, A. K. Plastoglobule proteome. Plant Physiology. 147 (2), 443-445 (2008).
  15. Peramuna, A., Summers, M. L. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme. Archives of Microbiology. 196 (12), 881-890 (2014).
  16. Austin, J. R., Frost, E., Vidi, P. A., Kessler, F., Staehelin, L. A. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. The Plant Cell. 18 (7), 1693-1703 (2006).
  17. Eugeni Piller, L., Abraham, M., Dormann, P., Kessler, F., Besagni, C. Plastid lipid droplets at the crossroads of prenylquinone metabolism. Journal of Experimental Botany. 63 (4), 1609-1618 (2012).
  18. Eugeni Piller, L., Glauser, G., Kessler, F., Besagni, C. Role of plastoglobules in metabolite repair in the tocopherol redox cycle. Frontiers in Plant Science. 5, 298 (2014).
  19. Xu, C., Fan, J., Shanklin, J. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Progress in Lipid Research. 80, 101069 (2020).
  20. Izquierdo, Y., Fernandez-Santos, R., Cascon, T., Castresana, C. Lipid droplet isolation from Arabidopsis thaliana leaves. Bio-Protocols. 10 (24), 3867 (2020).
  21. Espinoza-Corral, R., Schwenkert, S., Lundquist, P. K. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. Plant Journal. 106 (6), 1571-1587 (2021).
  22. Espinoza-Corral, R., Lundquist, P. K. The plastoglobule-localized protein AtABC1K6 is a Mn2+-dependent kinase necessary for timely transition to reproductive growth. Journal of Biological Chemistry. 298 (4), 101762 (2022).
  23. Espinoza-Corral, R., Herrera-Tequia, A., Lundquist, P. K. Insights into topology and membrane interaction characteristics of plastoglobule-localized AtFBN1a and AtLOX2. Plant Signalling & Behavior. 16 (10), 1945213 (2021).
  24. Besagni, C., Piller, L. E., Bréhélin, C., Jarvis, R. P. Preparation of Plastoglobules from Arabidopsis Plastids for Proteomic Analysis and Other Studies. Chloroplast Research in Arabidopsis. , 223-239 (2011).
  25. Yang, H., Murphy, A. Membrane preparation, sucrose density gradients and two-phase separation fractionation from five-day-old Arabidopsis seedlings. Bio-Protocols. 3 (24), 1014 (2022).
  26. Kelekar, P., Wei, M., Yang, P., Pazour, G. J., King, S. M. Isolation and Analysis of Radial Spoke Proteins. Cilia: Motors and Regulation. Methods in Cell Biology. 92, 181-196 (2009).
  27. Chen, J. H., et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nature Plants. 6 (5), 570-580 (2020).
  28. Liu, L. Ultramicroscopy reveals that senescence induces in-situ and vacuolar degradation of plastoglobules in aging watermelon leaves. Micron. 80, 135-144 (2016).
  29. Singh, D. K., Laremore, T. N., Smith, P. B., Maximova, S. N., McNellis, T. W. Knockdown of FIBRILLIN4 gene expression in apple decreases plastoglobule plastoquinone content. PLoS One. 7 (10), 47547 (2012).
  30. Singh, D. K., et al. FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiology. 154 (3), 1281-1293 (2010).
  31. Zheng, X., et al. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. Plant Biotechnology Journal. , (2022).
  32. Bligh, E. G., Dyer, W. J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry & Physiology. 37 (8), 911-917 (1959).
check_url/kr/64515?article_type=t

Play Video

Cite This Article
Shivaiah, K., Susanto, F. A., Devadasu, E., Lundquist, P. K. Plastoglobule Lipid Droplet Isolation from Plant Leaf Tissue and Cyanobacteria. J. Vis. Exp. (188), e64515, doi:10.3791/64515 (2022).

View Video