Summary

小鼠单吻合十二指肠回肠旁路与袖状胃切除术模型

Published: February 10, 2023
doi:

Summary

单吻合十二指肠回肠旁路术 (SADI-S) 是一种新兴的减肥手术,具有重要的代谢作用。在本文中,我们提出了一种可靠且可重复的小鼠SADI-S模型。

Abstract

肥胖是世界范围内的主要健康问题。作为应对措施,减肥手术已经出现,通过限制性和吸收不良机制治疗肥胖及其相关合并症(例如糖尿病、血脂异常、非酒精性脂肪性肝炎、心血管事件和癌症)。了解这些程序允许这种改进的机制通常需要将它们转移到动物身上,特别是在小鼠中,因为很容易产生转基因动物。最近,单吻合十二指肠回肠旁路术与袖状胃切除术(SADI-S)已成为一种同时使用限制性和吸收不良作用的手术,在严重肥胖的情况下被用作胃旁路术的替代方案。到目前为止,该程序与强大的代谢改善有关,这导致其在日常临床实践中的使用显着增加。然而,由于缺乏动物模型,这些代谢效应背后的机制研究得很少。在本文中,我们提出了一种可靠且可重复的小鼠SADI-S模型,特别关注围手术期管理。这种新的啮齿动物模型的描述和使用将有助于科学界更好地了解SADI-S诱导的分子,代谢和结构变化,并更好地确定临床实践的手术适应症。

Introduction

肥胖是一种新兴的流行情况,患病率日益增加,全世界每20名成年人中约有1人受到影响1。近年来,减肥手术已成为受影响成年人最有效的治疗选择,改善了体重减轻和代谢紊乱2,3结果因所用外科手术的类型而异。

减肥手术的效果主要有两种机制:旨在增加饱腹感的限制(例如在袖状胃切除术(SG)中,80%的胃被切除)和吸收不良。在暗示限制和吸收不良的手术中,单吻合十二指肠回肠旁路术联合袖状胃切除术 (SADI-S) 已被提出作为 Roux-en-Y 胃旁路术 (RYGB) 的替代方案,其中在大约 20% 的患者中观察到体重恢复45。在这种技术中,袖状胃切除术与小肠重新排列有关,将其分为胆道和短公共肢体(占小肠总长度的三分之一)(图1A)。从技术上讲,SADI-S 比 RYGB 具有仅需要一次吻合的优势,可将手术时间缩短约 30%。此外,这种方法保留了幽门,有助于降低消化性溃疡疾病的风险并限制吻合口渗漏。SADI-S还与高代谢改善率有关,在过去几年中强烈支持其使用67

由于代谢效应已成为减肥手术的基础,阐明其机制似乎至关重要。因此,使用动物模型进行减肥手术对于更好地了解其代谢作用以及所涉及的细胞和分子途径至关重要8。例如,这些模型有助于更好地了解SG或RYGB在受控环境中9后食物摄入量的变化,以及通过肠道屏障1011研究葡萄糖或胆固醇通量;这些信息在临床研究中很少可用。这些知识可以帮助确定他们的最佳手术适应症。我们之前描述了SG和RYGB12的小鼠模型。然而,尽管SADI-S在临床实践中取得了有希望的结果,但它仅在大鼠131415中开发和描述。然而,鉴于其遗传延展性,小鼠模型过去可用于研究此类程序的各种代谢效应161718,并且SADI-S小鼠模型可用于评估SADI-S的影响尽管技术困难。

在本文中,我们以可重复的方式描述了SADI-S程序在小鼠中的适应性(图1B)。特别注意围手术期护理的描述。

Protocol

该协议已获得当地法国动物实验伦理委员会的批准(Comité d’éthique en expérimentation animale;参考CEEA-PdL n 06)。 1.术前准备 手术前3天在正常饮食中添加凝胶饮食食品。手术前6小时禁食小鼠。 在带氧气(1 L / min)的专用腔室中用5%异氟醚(1L / min)诱导麻醉。皮下注射丁丙诺啡(0.1mg / kg),阿莫西林(15mg / kg),甲氧氯普胺(1mg / kg),美洛昔康(1mg / …

Representative Results

学习曲线该模型的学习曲线如图 6 所示。观察到手术时间逐渐减少,在4周的强化训练后达到约60分钟的手术(图6A)。术后5天生存率也随着时间的推移而改善,在常规练习期间达到77%(图6B)。最常见的死亡原因是吻合口瘘和导致胆道腹膜炎的传入袢综合征。我们在第一个月晚些时候用本手稿中描述的技术观察到?…

Discussion

减肥手术的技术不断发展,似乎是目前肥胖和相关代谢合并症最有效的治疗方法31920。SADI-S手术于2007年首次描述4,是一种有前途的手术,与其他吸收不良手术相比,具有更大的代谢作用。动物模型,特别是允许快速生成转基因模型的小鼠,迫切需要充分了解这些改进背后的机制。在这里,我们描述了小?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Ethicon(强生外科技术)慷慨地提供缝合线和手术夹。这项工作得到了NExT人才项目,南特大学,南特CHU的资助。

Materials

Agagani needle 26 G Terumo 050101B 26 G needle
Betadine dermique  Pharma-gdd 3300931499787 Povidone solution
Betadine scrub Pharma-gdd  3400931499787 Povidone solution
Binocular microscope Optika Microscopes Italy SZN-9 Binocular stereomicroscope
Buprecare Animalcare 3760087151244 Buprenorphin
Castroviejo, straight 9 cm F.S.T 12060-02 Micro scissors
Castroviejo, straight 9 cm F.S.T 12060-02 Needle holder
Chlorure de sodium Fresenius 0.9% Fresenius Kabi  BE182743 NaCl 0.9%
Clamoxyl Med'vet 5414736007496 Amoxicilline
Cotton buds Comed 2510805 Cotton swabs
Element HT5 Scilvet Element HT5 Automated hematology analyzer
Emeprid CEVA 3411111914365 Metoclopramid
Extra Fine Graefe Forceps, curved (tip width: 0.5 mm) F.S.T 11152-10 Surgical forceps
Extra Fine Graefe Forceps, straight (tip width: 0.5 mm) F.S.T 11150-10 Surgical forceps
Fercobsang Vetoprice QB03AE04 Iron, multivitamins and minerals 
Forane Baxter 1001936060 Isoflurane
Graefe forceps, straight (tip width: 0.8 mm) F.S.T 11050-10 Forceps
Graphpad Prism version 8.0 GraphPad Software, Inc. Version 8.0 Software for statistical analysis
Heat pad Intellibio innovation A-2101-00300 Heat pad
Incubator Bioconcept Technologies Manufactured on demand Incubator 
Lighting Optika Microscopes Italy CL-30 Lighting for microscopy
Ocrygel Med'vet 3700454505621 Carboptol 980 NF
Pangen 2.5 cm x 3.5 cm Urgovet A02978 Haemostatic collagen compress
Prolene 6/0 B.Braun 3097915 Optilene 6/0 (0.7 metric) 75 cm 2XDR13 CV2 RCP, suture cord
Prolene 8/0 Ethicon 8732 2 x BV175-6 MP, 3/8 Circle, 8 mm,  suture cord
Scissors F.S.T 146168-09 Surgical scissors
Sterile compresses  Laboartoire Sylamed 211S05-50 Non-woven sterile compressed
Terumo Syringe Terumo 50828 1 mL syringe
Titanium hemostatic clip Péters Surgical B2180-1 Surgical clip
Vannas Wolff F.S.T 15009-08 Micro scissors
Vita Rongeur Virbac 3597133087611 Vitamin supplementation
Vitaltec stainless Péters Surgical PB 220-EB Medium Surgical clip applier

References

  1. Flegal, K. M., Carroll, M. D., Kit, B. K., Ogden, C. L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA. 307 (5), 491-497 (2012).
  2. Sjöström, L., et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 311 (22), 2297-2304 (2014).
  3. Dyson, J., et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. Journal of Hepatology. 60 (1), 110-117 (2014).
  4. Sánchez-Pernaute, A., et al. Proximal duodenal-ileal end-to-side bypass with sleeve gastrectomy: proposed technique. Obesity Surgery. 17 (12), 1614-1618 (2007).
  5. Himpens, J., Verbrugghe, A., Cadière, G. B., Everaerts, W., Greve, J. W. Long-term results of laparoscopic Roux-en-Y Gastric bypass: evaluation after 9 years. Obesity Surgery. 22 (10), 1586-1593 (2012).
  6. Sánchez-Pernaute, A., et al. Long-term results of single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). Obesity Surgery. 32 (3), 682-689 (2022).
  7. Shoar, S., Poliakin, L., Rubenstein, R., Saber, A. A. Single anastomosis duodeno-ileal switch (SADIS): A systematic review of efficacy and safety. Obesity Surgery. 28 (1), 104-113 (2018).
  8. Rao, R. S., Rao, V., Kini, S. Animal models in bariatric surgery–a review of the surgical techniques and postsurgical physiology. Obesity Surgery. 20 (9), 1293-1305 (2010).
  9. Lutz, T. A., Bueter, M. The use of rat and mouse models in bariatric surgery experiments. Frontiers in Nutrition. 3, 25 (2016).
  10. Baud, G., et al. Bile diversion in Roux-en-Y Gastric Bypass modulates sodium-dependent glucose intestinal uptake. Cell Metabolism. 23 (3), 547-553 (2016).
  11. Blanchard, C., et al. Sleeve gastrectomy alters intestinal permeability in diet-induced obese mice. Obesity Surgery. 27 (10), 2590-2598 (2017).
  12. Ayer, A., et al. Techniques of sleeve gastrectomy and modified Roux-en-Y Gastric Bypass in mice. Journal of Visualized Experiments. (121), e54905 (2017).
  13. Wang, T., et al. Comparison of diabetes remission and micronutrient deficiency in a mildly obese diabetic rat model undergoing SADI-S versus RYGB. Obesity Surgery. 29 (4), 1174-1184 (2019).
  14. Wu, W., et al. Comparison of the outcomes of single anastomosis duodeno-ileostomy with sleeve gastrectomy (SADI-S), single anastomosis sleeve ileal (SASI) bypass with sleeve gastrectomy, and sleeve gastrectomy using a rodent model with diabetes. Obesity Surgery. 32 (4), 1209-1215 (2022).
  15. Laura, M., et al. Establishing a reproducible murine animal model of single anastomosis duodenoileal bypass with sleeve gastrectomy (SADl-S). Obesity Surgery. 28 (7), 2122-2125 (2018).
  16. Meoli, L., et al. Intestine-specific overexpression of LDLR enhances cholesterol excretion and induces metabolic changes in male mice. Endocrinology. 160 (4), 744-758 (2019).
  17. Abu El Haija, M., et al. Toll-like receptor 4 and myeloid differentiation factor 88 are required for gastric bypass-induced metabolic effects. Surgery for Obesity and Related Diseases. 17 (12), 1996-2006 (2021).
  18. Kumar, S., et al. Lipocalin-type prostaglandin D2 synthase (L-PGDS) modulates beneficial metabolic effects of vertical sleeve gastrectomy. Surgery for Obesity and Related Diseases. 12 (8), 1523-1531 (2016).
  19. Heffron, S. P., et al. Changes in lipid profile of obese patients following contemporary bariatric surgery: A meta-analysis. The American Journal of Medicine. 129 (9), 952-959 (2016).
  20. Carswell, K. A., Belgaumkar, A. P., Amiel, S. A., Patel, A. G. A systematic review and meta-analysis of the effect of gastric bypass surgery on plasma lipid levels. Obesity Surgery. 26 (4), 843-855 (2016).
  21. Surve, A., Zaveri, H., Cottam, D. Retrograde filling of the afferent limb as a cause of chronic nausea after single anastomosis loop duodenal switch. Surgery for Obesity and Related Diseases. 12 (4), 39-42 (2016).
  22. Uysal, M., et al. Caecum location in laboratory rats and mice: an anatomical and radiological study. Laboratory Animals. 51 (3), 245-255 (2017).
  23. Sánchez-Pernaute, A., et al. Single-anastomosis duodeno-ileal bypass with sleeve gastrectomy: metabolic improvement and weight loss in first 100 patients. Surgery for Obesity and Related Diseases. 9 (5), 731-735 (2013).
  24. Wei, J. H., Yeh, C. H., Lee, W. J., Lin, S. J., Huang, P. H. Sleeve gastrectomy in mice using surgical clips. Journal of Visualized Experiments. (165), e60719 (2020).
  25. Ying, L. D., et al. Technical feasibility of a murine model of sleeve gastrectomy with ileal transposition. Obesity Surgery. 29 (2), 593-600 (2019).
  26. Bruinsma, B. G., Uygun, K., Yarmush, M. L., Saeidi, N. Surgical models of Roux-en-Y gastric bypass surgery and sleeve gastrectomy in rats and mice. Nature Protocols. 10 (3), 495-507 (2015).
check_url/kr/64610?article_type=t

Play Video

Cite This Article
Frey, S., Ayer, A., Sotin, T., Lorant, V., Cariou, B., Blanchard, C., Le May, C. Single-Anastomosis Duodeno-Ileal Bypass with Sleeve Gastrectomy Model in Mice. J. Vis. Exp. (192), e64610, doi:10.3791/64610 (2023).

View Video