Summary

人卵泡中的基因表达分析

Published: February 17, 2023
doi:

Summary

在这里,我们描述了一个协议,概述了如何从冷冻解冻的皮质组织中分离人类卵巢卵泡以进行基因表达分析。

Abstract

卵巢是由不同细胞类型组成的异质器官。为了研究卵泡生成过程中发生的分子机制,可以在固定组织上进行蛋白质的定位和基因表达。然而,为了正确评估人类卵泡中的基因表达水平,必须分离这种复杂而微妙的结构。因此,Woodruff实验室先前描述的适应方案已被开发用于将卵泡(卵母细胞和颗粒细胞)与其周围环境分开。首先使用两种工具手动处理卵巢皮质组织以获得小碎片:组织切片机和组织切碎器。然后用0.2%胶原酶和0.02%DNA酶酶消化组织至少40分钟。该消化步骤在37°C和5%CO2 下进行,并伴随着每10分钟机械移液培养基。孵育后,在显微镜放大镜下使用校准的微毛细管移液管手动收集分离的卵泡。如果卵泡仍然存在于组织碎片中,则通过手动显微切割完成该过程。将卵泡收集在培养基中的冰上,并在磷酸盐缓冲盐溶液液滴中冲洗两次。必须仔细控制这种消化过程,以避免卵泡恶化。一旦卵泡的结构似乎受损或最多90分钟后,用含有10%胎牛血清的4°C封闭溶液停止反应。应收集至少20个分离的卵泡(大小小于75μm),以便在RNA提取后获得足够量的总RNA,以进行实时定量聚合酶链反应(RT-qPCR)。提取后,来自20个卵泡的总RNA的定量达到5ng / μL的平均值。然后将总RNA逆转录成cDNA,并使用RT-qPCR进一步分析感兴趣的基因。

Introduction

卵巢是由功能和结构单元组成的复杂器官,包括皮层内的滤泡和基质。卵泡发生,即卵泡活化、生长和成熟从原始静止状态到能够受精并支持早期胚胎发育的成熟卵泡的过程,在研究中被广泛研究1。揭示推动这一现象的机制可以改善妇女的生育护理2.对固定人体组织的分析可以评估卵巢功能单位内的蛋白质表达和基因定位34。然而,需要特定的技术将卵泡与周围的皮层分离,以准确评估卵巢卵泡内的基因表达水平。因此,在之前的一项研究中,开发了一种卵泡分离技术,允许直接从卵巢的功能单元分析基因表达5。已经开发了不同的方法,例如酶消化和/或机械分离,以及激光捕获显微切割,允许在一块组织内分离卵泡6789卵泡分离广泛用于人类或动物卵巢组织,以评估卵泡在发育各个阶段的基因表达谱101112。然而,最佳分离程序应考虑到致密皮层内卵泡的脆弱结构,因此应小心执行以避免任何损害7。这份手稿描述了一种程序,改编自Woodruff实验室描述的方案,从冷冻解冻的卵巢皮层中分离出人类卵泡,以便进行基因表达分析13

从冷冻人体组织中分离卵巢卵泡的第一步是解冻程序。该过程基于用于移植冷冻保存的卵巢组织的临床方案进行,如前所述1415。该过程旨在通过以降低培养基浓度冲洗卵巢皮层来去除冷冻保护剂。然后,在酶和机械分离之前将组织碎片化以取回卵泡。可以使用具有高放大倍率和高质量光学元件的体视显微镜区分不同阶段的卵泡,以分离感兴趣的卵泡。使用集成到显微镜中的尺子测量每个分离的卵泡,并且可以根据卵泡的发育阶段合并卵泡:原始卵泡(30μm),初级卵泡(60μm),次级卵泡(120-200μm)和窦卵泡(>200μm)16。可以根据卵泡的形态进行进一步的分类:原始卵泡有一层扁平的颗粒细胞(GC),原代卵泡有一层立方体GC,次级卵泡至少有两层立方体GC,GC中存在空腔是窦期的特征。当选择感兴趣的卵泡时,进行RNA提取。在实时定量聚合酶链反应(RT-qPCR)之前评估RNA的数量和质量(图1)。

Protocol

该项目得到了伊拉斯姆医院伦理委员会(比利时布鲁塞尔)的批准。该方案中包含的患者在2000年化疗暴露之前接受了卵巢组织冷冻保存(OTC)以保存生育能力。患者签署了知情书面同意书,在储存期结束时将其剩余的冷冻组织捐赠给研究。 1. 冷冻保存的卵巢组织解冻 准备含有五种解冻溶液的 6 孔板。第一个孔含有 5 mL 由 Leibovitz-15 培养基、0.1 mol/L 蔗糖、…

Representative Results

使用此分离程序,实验者可以从基质环境中检索卵泡以进行特定的基因表达分析。根据卵泡的大小和形态,可以区分卵泡生成的不同阶段。实验者可以使用适应的微毛细管移液管根据卵泡的大小选择感兴趣的卵泡。通过使用最大75μm的微毛细血管,可以将原始和初级卵泡与次级,窦和成熟卵泡区分开来。此外,实验者可以根据卵泡形态确认卵泡阶段。在研究卵泡活化时,选择静止和原代卵泡,大?…

Discussion

卵巢组织的冷冻保存是保存癌症患者生育能力的一种有前途的方法。在临床上,解冻的皮质组织在缓解后移植回患者体内,允许卵巢功能和生育能力恢复1920。除了临床使用外,残留的卵巢碎片也可以在储存期结束时捐赠用于研究,以研究调节卵泡生成的机制。此外,当不可行时,这种组织对于开发移植的替代方案特别有用,例如 体外 培养系?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了卓越科学(EOS)资助(ID:30443682)的支持。I.D.是比利时国家科学研究基金会(FNRS)的副研究员。

Materials

2 mm gridded Petri dish Corning 430196
2100 Bioanalyzer instrument Agilent G2939BA
2100 Expert software Agilent version B.02.08.SI648
4-wells plate Sigma Aldrich D6789
6-wells plate Carl Roth  EKX5.1
Agilent total RNA 6000 pico kit Agilent 5067-1513
Ascorbic acid Sigma Aldrich A4403
Aspirator tube assemblies for microcapillary pipettes Sigma Aldrich A5177
Centrifuge Eppendorf 5424R
Collagenase IV LifeTechnologies 17104-019
DMSO Sigma Aldrich D2650
DNase Sigma Aldrich D4527-10kU
FBS Gibco 10270-106
GoScript reverse transcriptase Promega A5003
HSA CAF DCF  LC4403-41-080
Leibovitz-15 LifeTechnologies 11415-049
L-Glutamine Sigma Aldrich G7513
McCoy’s 5A + bicarbonate + Hepes LifeTechnologies 12330-031
McIlwain tissue chopper Stoelting 51350
Microcapillary RI EZ-Tips 200 µm CooperSurgical 7-72-2200/1
Microcapillary RI EZ-Tips 75 µm CooperSurgical 7-72-2075/1
NanoDrop 2000/2000c operating software ThermoFisher version 1.6
NanoDrop spectrophotometer ThermoFisher 2000/2000c
Penicillin G Sigma Aldrich P3032
PowerTrack SYBR green master mix ThermoFisher A46109
Primers: GDF9 F: CCAGGTAACAGGAATCCTTC R: GGCTCCTTTATCATTAGATTG
Primers: HPRT F: CCTGGCGTCGTGATTAGTGAT R: GAGCACACAGAGGGCTACAA
Primers: Kit Ligand F: TGTTACTTTCGTACATTGGCTGG R: AGTCCTGCTCCATGCAAGTT
Real-Time qPCR Quantstudio 3 ThermoFisher A33779
RNAqueous-micro total RNA isolation kit ThermoFisher AM1931
Selenium Sigma Aldrich S9133
Sodium pyruvate Sigma Aldrich S8636
Stereomicroscope Nikon SMZ800
Streptomycine sulfate Sigma Aldrich S1277
Sucrose Sigma Aldrich S1888
Thermo Scientific Forma Series II  water-jacketed CO2 incubators ThermoFisher 3110
Thomas Stadie-Riggs tissue slicer Thomas Scientific 6727C10
Transferrin Roche  10652202001

References

  1. Gougeon, A. Human ovarian follicular development: From activation of resting follicles to preovulatory maturation. Annales d’Endocrinologie. 71 (3), 132-143 (2010).
  2. Yang, D. Z., Yang, W., Li, Y., He, Z. Progress in understanding human ovarian folliculogenesis and its implications in assisted reproduction. Journal of Assisted Reproduction and Genetics. 30 (2), 213-219 (2013).
  3. Rosewell, K. L., Curry, T. E. Detection of ovarian matrix metalloproteinase mRNAs by in situ hybridization. Molecular Endocrinology. 590, 115-129 (2009).
  4. Tuck, A. R., Robker, R. L., Norman, R. J., Tilley, W. D., Hickey, T. E. Expression and localisation of c-kit and KITL in the adult human ovary. Journal of Ovarian Research. 8, 31 (2015).
  5. Oktay, K., et al. Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertility and Sterility. 67 (3), 481-486 (1997).
  6. Bonnet, A., et al. Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by laser capture microdissection. BMC Genomics. 12, 417 (2011).
  7. Chiti, M. C., et al. A modified and tailored human follicle isolation procedure improves follicle recovery and survival. Journal of Ovarian Research. 10 (1), 71 (2017).
  8. Kim, E. J., et al. Comparison of follicle isolation methods for mouse ovarian follicle culture in vitro. Reproductive Sciences. 25 (8), 1270-1278 (2018).
  9. Chen, J., et al. Optimization of follicle isolation for bioengineering of human artificial ovary. Biopreservation and Biobanking. 20 (6), 529-539 (2022).
  10. Babayev, E., Xu, M., Shea, L. D., Woodruff, T. K., Duncan, F. E. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth. Molecular Human Reproduction. 28 (10), (2022).
  11. McDonnell, S. P., Candelaria, J. I., Morton, A. J., Denicol, A. C. Isolation of small preantral follicles from the bovine ovary using a combination of fragmentation, homogenization, and serial filtration. Journal of Visualized Experiments. (187), e64423 (2022).
  12. Schallmoser, A., Einenkel, R., Färber, C., Sänger, N. In vitro growth (IVG) of human ovarian follicles in frozen thawed ovarian cortex tissue culture supplemented with follicular fluid under hypoxic conditions. Archives of Gynecology and Obstetrics. 306 (4), 1299-1311 (2022).
  13. Xu, M., et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Human Reproduction. 24 (10), 2531-2540 (2009).
  14. Demeestere, I., Simon, P., Englert, Y., Delbaere, A. Preliminary experience of ovarian tissue cryopreservation procedure: Alternatives, perspectives and feasibility. Reproductive Biomedicine Online. 7 (5), 572-579 (2003).
  15. Demeestere, I., et al. Ovarian function and spontaneous pregnancy after combined heterotopic and orthotopic cryopreserved ovarian tissue transplantation in a patient previously treated with bone marrow transplantation: Case report. Human Reproduction. 21 (8), 2010-2014 (2006).
  16. Gougeon, A. Dynamics of follicular growth in the human: A model from preliminary results. Human Reproduction. 1 (2), 81-87 (1986).
  17. Grosbois, J., Demeestere, I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Human Reproduction. 33 (9), 1705-1714 (2018).
  18. Grosbois, J., Vermeersch, M., Devos, M., Clarke, H. J., Demeestere, I. Ultrastructure and intercellular contact-mediated communication in cultured human early stage follicles exposed to mTORC1 inhibitor. Molecular Human Reproduction. 25 (11), 706-716 (2019).
  19. Oktay, K., et al. Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. Journal of the American Medical Association. 286 (12), 1490-1493 (2001).
  20. Chung, E. H., Lim, S. L., Myers, E., Moss, H. A., Acharya, K. S. Oocyte cryopreservation versus ovarian tissue cryopreservation for adult female oncofertility patients: A cost-effectiveness study. Journal of Assisted Reproduction and Genetics. 38 (9), 2435-2443 (2021).
  21. Walker, C. A., Bjarkadottir, B. D., Fatum, M., Lane, S., Williams, S. A. Variation in follicle health and development in cultured cryopreserved ovarian cortical tissue: A study of ovarian tissue from patients undergoing fertility preservation. Human Fertility. 24 (3), 188-198 (2021).
  22. Simon, L. E., Kumar, T. R., Duncan, F. E. In vitro ovarian follicle growth: A comprehensive analysis of key protocol variables. Biology of Reproduction. 103 (3), 455-470 (2020).
  23. Rice, S., Ojha, K., Mason, H. Human ovarian biopsies as a viable source of pre-antral follicles. Human Reproduction. 23 (3), 600-605 (2008).
  24. Kristensen, S. G., Rasmussen, A., Byskov, A. G., Andersen, C. Y. Isolation of pre-antral follicles from human ovarian medulla tissue. Human Reproduction. 26 (1), 157-166 (2011).
  25. Dong, F. -. L., et al. An research on the isolation methods of frozen-thawed human ovarian preantral follicles. International Journal of Clinical and Experimental Medicine. 7 (8), 2298-2303 (2014).
  26. Lierman, S., et al. Follicles of various maturation stages react differently to enzymatic isolation: a comparison of different isolation protocols. Reproductive Biomedicine Online. 30 (2), 181-190 (2015).
  27. Abir, R., et al. Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Human Reproduction. 14 (5), 1299-1301 (1999).
  28. Abir, R., et al. Morphological study of fully and partially isolated early human follicles. Fertility and Sterility. 75 (1), 141-146 (2001).
  29. McLaughlin, M., Albertini, D. F., Wallace, W. H. B., Anderson, R. A., Telfer, E. E. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Molecular Human Reproduction. 24 (3), 135-142 (2018).
  30. Abir, R., et al. Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertility and Sterility. 68 (4), 682-688 (1997).
  31. Vanacker, J., et al. Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: Protocol for application in a clinical setting. Fertility and Sterility. 96 (2), 379-383 (2011).
  32. Amargant, F., et al. Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Aging Cell. 19 (11), 13259 (2020).
check_url/kr/64807?article_type=t

Play Video

Cite This Article
Devos, M., Dias Nunes, J., Demeestere, I. Gene Expression Analyses in Human Follicles. J. Vis. Exp. (192), e64807, doi:10.3791/64807 (2023).

View Video