Summary

从肺源性样品中分离和纯化微血管和大血管内皮细胞

Published: February 03, 2023
doi:

Summary

尽管具有挑战性,但肺内皮细胞的分离对于肺部炎症的研究至关重要。本协议描述了大血管和微血管内皮细胞的高产量,高纯度分离的程序。

Abstract

从健康和患病组织和器官中分离的细胞的可用性是个性化医疗方法的关键要素。尽管生物样本库可以为生物医学研究提供广泛的原代细胞和永生化细胞,但这些并不能涵盖所有实验需求,特别是与特定疾病或基因型相关的实验需求。血管内皮细胞(ECs)是免疫炎症反应的关键组成部分,因此在多种疾病的发病机制中起着核心作用。值得注意的是,来自不同位点的EC表现出不同的生化和功能特性,使得特定EC类型(即大血管,微血管,动脉和静脉)的可用性对于设计可靠的实验至关重要。在这里,详细说明了从肺动脉和肺实质中获得高产量、几乎纯的人大血管和微血管内皮细胞的简单程序。任何实验室都可以以相对较低的成本轻松复制该方法,以实现独立于商业来源并获得尚不可用的EC表型/基因型。

Introduction

血管内皮排列在血管的内表面。它在调节血液凝固、血管张力和免疫炎症反应中起关键作用1234尽管从人类标本中分离的内皮细胞(ECs)的培养对于研究目的至关重要,但必须指出的是,来自不同血管(动脉,静脉,毛细血管)的EC具有特定的功能。这些不能完全由人脐静脉内皮细胞(HUVEC)概括,后者很容易获得并广泛用于血管内皮病理生理学研究56。例如,人肺微血管内皮细胞(HLMVECs)通过控制白细胞募集和积累在肺部炎症中起关键作用47。因此,旨在以高保真度再现肺部炎症的实验环境应包括HLMVEC。另一方面,可以在几种病理中观察到EC功能障碍;因此,来自患者的EC对于建立可靠的疾病体外模型至关重要。例如,从囊性纤维化(CF)患者的肺中解剖出的肺动脉(HPAEC)中分离EC碎片,使我们能够发现这种疾病内皮功能障碍的机制89

因此,旨在优化疾病状态下不同来源/器官的EC分离的方案对于为研究人员提供有价值的研究工具至关重要,特别是当这些工具无法商业化时。HLMVEC和HPAEC分离协议先前已报道10,11,12,13,14,1516171819在所有情况下,肺标本的酶消化导致混合细胞群,使用特设选择性培养基和基于磁珠或细胞术的细胞分选进行纯化。这些方案的进一步优化必须解决EC分离中的两个主要问题:(1)细胞和组织污染,应尽早解决培养通道,以尽量减少EC复制衰老20;(2)初级EC分离株的产量低。

本研究描述了一种用于HLMVEC和HPAEC的高产量、高纯度分离的新方案。该程序很容易应用,只需几个步骤即可获得几乎纯的大血管和微血管 EC。

Protocol

这项研究获得批准,协议遵循基耶蒂-佩斯卡拉大学人类研究伦理委员会(#237_2018bis)的指导方针。 图 1说明了从肺实质或肺动脉的节段(1-3cm长)中分离出内皮细胞,这些细胞来自因各种原因(例如气胸或肺叶切除术)接受胸外科手术的去识别人类受试者(书面同意)。在后一种情况下,外科医生还收集了肺动脉段。值得注意的是,外科医生被准确地指示收集无癌症样本。?…

Representative Results

HLMEC 隔离HLMVEC分离过程中的主要问题是污染细胞的存在,因为微观毛细血管不容易与基质组织分离。因此,在分离过程的最早阶段达到尽可能高的纯度对于减少培养传代从而减少细胞老化至关重要。同样,最佳的隔离方案应提供尽可能高的纯HLMVECs产量。为了实现这些目标,基于先前描述的协议10,11,12,14?…

Discussion

血管内皮细胞在人体病理生理学中发挥的多种作用使这些细胞成为 体外 致病学和药理学研究不可或缺的工具。由于来自不同血管部位/器官的EC表现出特殊的特征和功能,因此来自感兴趣器官的健康和患病EC的可用性将是研究目的的理想选择。例如,HLMVEC对于肺部炎症的研究至关重要;因此,高产量、高纯度分离这些细胞的方法将有利于不同的研究领域。

分离HLMVEC的方法…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了意大利大学和研究部(前 60% 2021 年和 2022 年)对 R. P. 的资金支持,以及意大利囊性纤维化基金会 (FFC#23/2014) 和意大利卫生部 (L548/93) 对 M. R. 的赠款。

Materials

0.05% trypsin-EDTA 1X GIBCO 25300-054 Used to detach cells from the culture plates
Anti CD31 Antibody, clone WM59 Dako M0823 Used for CD-31 staining in immunocytochemistry. Dilution used: 1:50
Anti vWF Antibody Thermo Fisher Scientific MA5-14029 Used for von Willebrand factor staining in immunocytochemistry. Working dilution: 1:100
Autoclavable surgical scissors Any Used for chopping specimens
Cell strainers 40 µm Corning 431750 Used during the second filtration
Cell strainers 70 µm Corning 431751 Using during the first filtration
Collagenase, Type 2 Worthington LS004177 Type 2 Collagenase used for enzymatic digestion. Working concentration: 2 mg/mL
Conjugated anti CD31 Antibody BD Biosciences 555445 Used for cell sorting (1:20 dilution)
Dulbecco′s Phosphate Buffered Saline (PBS) with  CaCl2 and MgCl2 Sigma-Aldrich D8662 Used for cell washing before medium change
Dulbecco′s Phosphate Buffered Saline (PBS) without CaCl2 and MgCl2 Sigma-Aldrich D8537 Used for washing surgical specimens and cells before trypsinization
Endothelial Cell Growth Medium MV PromoCell C-22020 HLMVEC growth medium
Fibronectin Sigma-Aldrich F0895 Fibronectin from human plasma used for plate coating. Working concentration: 50 µg/mL
Gelatin from porcine skin, type A Sigma-Aldrich G2500 Used for plate coating
Type A gelatin Sigma-Aldrich g-2500 Gelatin from porcine skin used for plate coating. Working concentration: 1.5%

References

  1. Muller, W. A. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends in Immunology. 24 (6), 326-333 (2003).
  2. Sumpio, B. E., Timothy Riley, J., Dardik, A. Cells in focus: Endothelial cell. The International Journal of Biochemistry & Cell Biology. 34 (12), 1508-1512 (2002).
  3. Lüscher, T. F., Tanner, F. C. Endothelial regulation of vascular tone and growth. American Journal of Hypertension. 6, 283-293 (1993).
  4. Marki, A., Esko, J. D., Pries, A. R., Ley, K. Role of the endothelial surface layer in neutrophil recruitment. Journal of Leukocyte Biology. 98 (4), 503-515 (2015).
  5. Crampton, S. P., Davis, J., Hughes, C. C. W. Isolation of human umbilical vein endothelial cells (HUVEC). Journal of Visualized Experiments. (3), e183 (2007).
  6. Ganguly, A., Zhang, H., Sharma, R., Parsons, S., Patel, K. D. Isolation of human umbilical vein endothelial cells and their use in the study of neutrophil transmigration under flow conditions. Journal of Visualized Experiments. (66), e4032 (2012).
  7. Dejana, E., Corada, M., Lampugnani, M. G. Endothelial cell-to-cell junctions. FASEB Journal. 9 (10), 910-918 (1995).
  8. Plebani, R., et al. Establishment and long-term culture of human cystic fibrosis endothelial cells. Laboratory Investigation. 97 (11), 1375-1384 (2017).
  9. Totani, L., et al. Mechanisms of endothelial cell dysfunction in cystic fibrosis. Biochimica Et Biophysica Acta. Molecular Basis of Disease. 1863 (12), 3243-3253 (2017).
  10. Gaskill, C., Majka, S. M. A high-yield isolation and enrichment strategy for human lung microvascular endothelial cells. Pulmonary Circulation. 7 (1), 108-116 (2017).
  11. Hewett, P. W. Isolation and culture of human endothelial cells from micro- and macro-vessels. Methods in Molecular Biology. 1430, 61 (2016).
  12. van Beijnum, J. R., Rousch, M., Castermans, K., vander Linden, E., Griffioen, A. W. Isolation of endothelial cells from fresh tissues. Nature Protocols. 3 (6), 1085-1091 (2008).
  13. Comhair, S. A. A., et al. Human primary lung endothelial cells in culture. American Journal of Respiratory Cell and Molecular Biology. 46 (6), 723-730 (2012).
  14. Visner, G. A., et al. Isolation and maintenance of human pulmonary artery endothelial cells in culture isolated from transplant donors. The American Journal of Physiology. 267, 406-413 (1994).
  15. Mackay, L. S., et al. Isolation and characterisation of human pulmonary microvascular endothelial cells from patients with severe emphysema. Respiratory Research. 14 (1), 23 (2013).
  16. Ventetuolo, C. E., et al. Culture of pulmonary artery endothelial cells from pulmonary artery catheter balloon tips: considerations for use in pulmonary vascular disease. The European Respiratory Journal. 55 (3), 1901313 (2020).
  17. Wang, J., Niu, N., Xu, S., Jin, Z. G. A simple protocol for isolating mouse lung endothelial cells. Scientific Reports. 9 (1), 1458 (2019).
  18. Wong, E., Nguyen, N., Hellman, J. Isolation of primary mouse lung endothelial cells. Journal of Visualized Experiments. (177), e63253 (2021).
  19. Kraan, J., et al. Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. British Journal of Cancer. 111 (1), 149-156 (2014).
  20. Khan, S. Y., et al. Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Scientific Reports. 7 (1), 39501 (2017).
  21. Cossarizza, A., et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology. 49 (10), 1457 (2019).
  22. Miron, R. J., Chai, J., Fujioka-Kobayashi, M., Sculean, A., Zhang, Y. Evaluation of 24 protocols for the production of platelet-rich fibrin. BMC Oral Health. 20 (1), 310 (2020).
  23. Lenting, P. J., Christophe, O. D., Denis, C. V. von Willebrand factor biosynthesis, secretion, and clearance: Connecting the far ends. Blood. 125 (13), 2019-2028 (2015).
  24. Thompson, S., Chesher, D. Lot-to-lot variation. The Clinical Biochemist Reviews. 39 (2), 51-60 (2018).
  25. Plebani, R., et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. Journal of Cystic Fibrosis. 21 (4), 606-615 (2021).
check_url/kr/64885?article_type=t

Play Video

Cite This Article
Plebani, R., D’Alessandro, A., Lanuti, P., Simeone, P., Cinalli, M., Righi, I., Palleschi, A., Mucci, M., Marchisio, M., Cappabianca, F., Camera, M., Mucilli, F., Romano, M. Microvascular and Macrovascular Endothelial Cell Isolation and Purification from Lung-Derived Samples. J. Vis. Exp. (192), e64885, doi:10.3791/64885 (2023).

View Video