Summary

植物细胞类型的分离和转录组分析

Published: April 07, 2023
doi:

Summary

高通量scRNA-seq方法的可行性和有效性预示着植物研究的单细胞时代。这里介绍的是一个强大而完整的程序,用于分离特定的拟 南芥 根细胞类型以及随后的转录组文库构建和分析。

Abstract

在多细胞生物中,发育编程和环境反应在不同的细胞类型甚至细胞内可能高度不同,这被称为细胞异质性。近年来,单细胞和细胞类型分离与二代测序(NGS)技术相结合已成为研究单细胞分辨率生物过程的重要工具。然而,由于植物细胞壁的存在,分离植物细胞相对困难,这限制了单细胞方法在植物中的应用。该协议描述了基于荧光激活细胞分选(FACS)的单细胞和细胞类型与植物细胞分离的稳健程序,适用于下游多组学分析和其他研究。使用 拟南芥 根荧光标记系,我们展示了如何分离特定细胞类型,例如木质部 – 极周周期细胞,侧根初始细胞,侧根帽细胞,皮质细胞和内胚层细胞。此外,还提供了使用Smart-seq2的有效下游转录组分析方法。细胞分离方法和转录组分析技术可以适应其他细胞类型和植物物种,在植物科学中具有广泛的应用潜力。

Introduction

细胞是所有生物体的基本单位,执行结构和生理功能。尽管多细胞生物中的细胞显示出明显的同步性,但不同类型和单个细胞的细胞在发育和环境反应过程中的转录组存在差异。高通量单细胞RNA测序(scRNA-seq)为了解细胞异质性提供了前所未有的能力。在植物科学中应用scRNA-seq有助于成功构建植物细胞图谱1,已被用于鉴定植物组织中的稀有细胞分类群2,提供了对植物组织中细胞类型组成的见解,并已用于鉴定细胞身份和植物发育和分化过程中使用的重要功能。此外,还可以推断植物组织1,2,3的时空发育轨迹,以发现新的标记基因4并使用scRNA-seq研究重要转录因子5的功能以揭示不同植物中相同细胞类型的进化保守性3.非生物胁迫是影响植物生长发育的最重要环境影响之一。通过单细胞转录组测序探索不同处理条件下植物组织中细胞类型组成的变化,还可以解决非生物胁迫响应机制6

使用scRNA测序解决细胞类型之间的转录异质性的潜力取决于细胞分离方法和测序平台。荧光激活细胞分选(FACS)是一种广泛使用的技术,用于根据光散射和细胞的荧光特性分离细胞亚群以获得scRNA-seq。转基因技术开发荧光标记系,大大提高了FACS7细胞分离的效率。使用Smart-seq28 进行scRNA-seq进一步增强了解剖细胞异质性的能力。Smart-seq2方法具有良好的基因检测灵敏度,即使在低转录本输入的情况下也能检测基因9。除了批量细胞类型采集外,现代细胞分选仪还提供单细胞索引分选格式,允许使用 Smart-seq210 或其他多重 RNA-seq 方法(如 CEL-seq211)以单细胞分辨率进行转录组分析。单细胞或细胞类型分选可用于许多其他下游应用,例如平行多组学研究1213。这里介绍的是一种强大且通用的方案,用于通过 FACS 从 拟南芥 标记细胞系的根中分离植物细胞类型,例如木质部极周周期细胞、侧根帽细胞、侧根初始细胞、皮质细胞和内胚层细胞。该协议还涉及构建用于下游转录组分析的Smart-seq2文库。

Protocol

以下方案已针对拟南芥野生型(WT)种子进行了优化,没有荧光和以下根细胞类型的荧光标记系:木质部 – 极周周期细胞(J0121),侧根初始细胞,侧根帽细胞(J3411),内胚层和皮质细胞(J0571)(图1A)。所有标记系均来自商业来源(见材料表),但侧根起始细胞标记系除外,该标记系是通过在先前发表的报告14之后将GATA23启动子驱动?…

Representative Results

原生质体分离该协议对于荧光 拟南芥 根标记系的原生质体分选有效。这些标记系是通过荧光蛋白与靶细胞类型中特异性表达的基因融合或使用增强子捕获系开发的(图1)。许多组织和器官已被解剖成在模式植物和作物中表达特定荧光标记物的细胞类型。 FACS 群体、分选细胞和文库质量控制通过使用野生型植物作为…

Discussion

基于Smart-seq2的方案可以从数百个细胞中生成可靠的测序文库8。起始材料的质量对于转录组分析的准确性至关重要。FACS是制备目标细胞的强大工具,但该过程,尤其是原生增殖步骤,必须针对植物应用进行优化。激光捕获显微切割(LCM)或手动解剖细胞也可以用作输入2526因此此处提供的协议可以潜在地用于具有或不具有已知标记?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们在上海交通大学农业与生物学院的单细胞多组学设施中建立了该方案,并得到了国家自然科学基金(批准号32070608),上海浦江计划(批准号20PJ1405800)和上海交通大学(批准号Agri-X20200202,2019TPB05)的支持。

Materials

0.22 µm strainer Sorfa  622110
Agar Yeasen 70101ES76
Agilent fragment analyzer Aglient Aglient 5200
Agilent high-sensitivity DNA kit Aglient DNF-474-0500
Ampure XP beads BECKMAN A63881
Betaine yuanye S18046-100g
Bleach Mr Muscle FnBn83BK 20% (v/v) bleach
BSA sigma 9048-46-8
CaCl2 yuanye S24109-500g
Cellulase R10 Yakult (Japan) 9012-54-8
Cellulase RS Yakult (Japan) 9012-54-8
Centrifuge tube (1.5 mL) Eppendolf 30121589
DNase, RNase, DNA and RNA Away Surface Decontaminants Beyotime R0127
dNTPs (10 mM) NEB N0447S
DTT (0.1 M)
invitrogen
18090050
Ethanol Sinopharm Chemical Reagent Co., Ltd 100092680
FACS BD FACS Melody BD-65745
FACS Sony SH800S
Filter tip  (1000 µL) Thermo Scientific TF112-1000-Q
Filter tip  (200 µL) Thermo Scientific TF140-200-Q
Filter tip (10 µL) Thermo Scientific TF104-10-Q
Filter tip (100 µL) Thermo Scientific TF113-100-Q
Fluorescent microscope Nikon Eclipse Ni-E
Four-Dimensional Rotating Mixer Kylin -Bell BE-1100
Hemicellulase sigma 9025-56-3
IS PCR primer 5'-AAGCAGTGGTATCAACGCAGAG
T-3'
KAPA HiFi HotStart ReadyMix(2X) Roche  7958935001
KCl Sinopharm Chemical Reagent Co., Ltd 7447-40-7
Macerozyme R10 Yakult (Japan) 9032-75-1
Magnetic separation stand invitrogen 12321D
Mannitol aladdin 69-65-8
MES aladdin 145224948
MgCl2  yuanye R21455-500ml
Microcentrifuges Eppendorf Centrifuge 5425
Micro-mini-centrifuge Titan Timi-10k
MS Phytotech M519
Nextera XT DNA Library Preparation Kit illumina FC-131-1024
oligo-dT30VN primer 5'-AAGCAGTGGTATCAACGCAGAG
TACTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTVN-3'
PCR instrument Thermal cycler A24811
Pectolyase Yakult (Japan) 9033-35-6
Plant marker lines Nottingham Arabidopsis Stock Centre (NASC)
Qubit 1x dsDNA HS Assay Kit invitrogen Q33231
Qubit 2.0 fluorometer invitrogen Q32866
RNase inhibitor  Thermo Scientific EO0382
RNase-free water invitrogen 10977023
Solution A 400 mM mannitol, 0.05 % BSA , 20 mM MES (pH5.7), 10 mM CaCl2, 20 mM KCl
Solution B 1 % (w/v)cellulase R10, 1 % (w/v) cellulase RS, 1 %  (w/v)hemicellulase, 0.5 %  (w/v)pectolyase and 1 %  (w/v) Macerozyme R10 of in a fresh aliquot of solution A
Sterile pestle BIOTREAT 453463
Strainer (40 µm ) Sorfa  251100
Superscript enzyme (200 U/µL) invitrogen 18090050
SuperScript VI buffer (5x) invitrogen 18090050
T0est tube (5 mL) BD Falcon 352052
Thin-walled PCR tubes with caps (0.5 mL) AXYGEN PCR-05-C
Triton X-100 Sangon Biotech A600198-0500
TSO primer 5'-AAGCAGTGGTATCAACGCAGAG
TACATrGrG+G-3'
Vortex Titan VM-T2

References

  1. Zhang, T. -. Q., Chen, Y., Liu, Y., Lin, W. -. H., Wang, J. -. W. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nature Communications. 12 (1), 2053 (2021).
  2. Denyer, T., et al. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Developmental Cell. 48 (6), 840-852 (2019).
  3. Liu, Q., et al. Transcriptional landscape of rice roots at the single-cell resolution. Molecular Plant. 14 (3), 384-394 (2021).
  4. Liu, Z., et al. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Molecular Plant. 13 (8), 1178-1193 (2020).
  5. Shahan, R., et al. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Developmental Cell. 57 (4), 543-560 (2022).
  6. Wendrich, J. R., et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 370 (6518), (2020).
  7. Carter, A. D., Bonyadi, R., Gifford, M. L. The use of fluorescence-activated cell sorting in studying plant development and environmental responses. The International Journal of Developmental Biology. 57 (6-8), 545-552 (2013).
  8. Picelli, S., et al. Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols. 9 (1), 171-181 (2014).
  9. Wang, X., He, Y., Zhang, Q., Ren, X., Zhang, Z. Direct comparative analyses of 10X genomics chromium and Smart-seq2. Genomics Proteomics Bioinformatics. 19 (2), 253-266 (2021).
  10. Serrano-Ron, L., et al. Reconstruction of lateral root formation through single-cell RNAsequencing reveals order of tissue initiation. Molecular Plant. 14 (8), 1362-1378 (2021).
  11. Hashimshony, T., et al. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology. 17, 77 (2016).
  12. Macaulay, I. C., et al. G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nature Methods. 12 (6), 519-522 (2015).
  13. Angermueller, C., et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nature Methods. 13 (3), 229-232 (2016).
  14. De Rybel, B., et al. A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Current Biology. 20 (19), 1697-1706 (2010).
  15. Duncombe, S. G., Barnes, W. J., Anderson, C. T. Imaging the delivery and behavior of cellulose synthases in Arabidopsis thaliana using confocal microscopy. Methods in Cell Biology. 160, 201-213 (2020).
  16. Levy, S. E., Myers, R. M. Advancements in next-generation sequencing. Annual Review of Genomics and Human Genetics. 17 (1), 95-115 (2016).
  17. Ooi, C. C., et al. High-throughput full-length single-cell mRNA-seq of rare cells. PLoS One. 12 (11), e0188510 (2017).
  18. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols. 11 (9), 1650-1667 (2016).
  19. Tsyganov, K., Perry, A., Archer, S., Powell, D. RNAsik: A Pipeline for complete and reproducible RNA-seq analysis that runs anywhere with speed and ease. Journal of Open Source Software. 3, 583 (2018).
  20. Love, M. I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 15 (12), 550 (2014).
  21. Kamiya, T., et al. The MYB36 transcription factor orchestrates Casparian strip formation. Proceedings of the National Academy of Sciences of the United States of America. 112 (33), 10533-10538 (2015).
  22. Zhang, Y., et al. Two types of bHLH transcription factor determine the competence of the pericycle for lateral root initiation. Nature Plants. 7 (5), 633-643 (2021).
  23. Haecker, A., et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development. 131 (3), 657-668 (2004).
  24. Chen, Q., et al. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 55 (6), 1072-1079 (2014).
  25. Nichterwitz, S., et al. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nature Communications. 7, 12139 (2016).
  26. Long, J., et al. Nurse cell–derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science. 373 (6550), (2021).
  27. Gutzat, R., et al. Arabidopsis shoot stem cells display dynamic transcription and DNA methylation patterns. EMBO Journal. 39 (20), e103667 (2020).
check_url/kr/64913?article_type=t

Play Video

Cite This Article
Zhang, J., Ahmad, M., Xie, R., Gao, H. Isolation and Transcriptome Analysis of Plant Cell Types. J. Vis. Exp. (194), e64913, doi:10.3791/64913 (2023).

View Video