Summary

ウマ骨格筋の高分解能蛍光呼吸測定

Published: February 03, 2023
doi:

Summary

馬は並外れた有酸素運動能力を持っているため、馬の骨格筋は、馬の運動生理学と哺乳類のミトコンドリア生理学の両方の研究にとって重要な組織となっています。この記事では、馬の骨格筋におけるミトコンドリア機能の包括的な評価のための技術について説明します。

Abstract

ミトコンドリアの機能(酸化的リン酸化と活性酸素種の生成)は、健康と病気の両方において重要です。したがって、ミトコンドリア機能の測定は生物医学研究の基本です。骨格筋は、特に馬などの非常に高い有酸素能力を持つ動物において、ミトコンドリアの強力な供給源であり、ミトコンドリア生理学を研究するための理想的な対象となっています。この記事では、採取したばかりの骨格筋ミトコンドリアを使用した同時蛍光測定を伴う高分解能呼吸留置法を使用して、さまざまなミトコンドリア状態下で基質を酸化する能力を定量化し、ミトコンドリア呼吸の異なる要素の相対容量を決定する方法を示します。テトラメチルローダミンメチルエステルは、同時酸素フラックスの単位あたりに生成される相対膜電位を計算することによるミトコンドリアの相対効率の計算を含む、基質酸化に起因するミトコンドリア膜電位の生成を実証するために使用されます。ADPからATPへの変換は、マグネシウムに対するアデニル酸塩の親和性が異なるため、反応チャンバー内のマグネシウム濃度の変化をもたらします。したがって、マグネシウムグリーンを使用してATP合成速度を測定することができ、酸化的リン酸化効率(リン酸化と酸化の比率[P / O])をさらに計算できます。最後に、過酸化水素と組み合わせると蛍光生成物(レゾルフィン)を生成するAmplex UltraRedを使用することで、ミトコンドリア呼吸中の活性酸素種の産生、およびROS産生と同時呼吸の関係を定量化できます。これらの技術は、さまざまな異なるシミュレート条件下でのミトコンドリア生理機能の堅牢な定量を可能にし、健康と病気の両方に対するこの重要な細胞成分の寄与に光を当てます。

Introduction

真核細胞のミトコンドリアは、細胞が仕事と維持に使用するATPの大部分を産生します1。ATPのミトコンドリア産生における重要なステップは、酸素から水への変換であり、したがって、ミトコンドリアおよび関連細胞の代謝能力は、酸素消費量の測定を通じて頻繁に定量化されます2。しかし、ミトコンドリア生理学は酸素消費の単純なプロセスよりも複雑であり、このエンドポイントへの依存は、ミトコンドリア機能と機能障害が細胞の健康に与える影響の不完全な評価のみを提供します。ミトコンドリア機能の完全な特性評価には、酸素消費量だけでなく、ATPおよび活性酸素種(ROS)の産生も評価する必要があります。

重要なミトコンドリア機能の追加測定は、特定の蛍光色素を使用して呼吸の測定と同時に達成することができます。テトラメチルローダミンメチルエステル(TMRM)は、ミトコンドリア膜貫通電位に比例してミトコンドリアマトリックスに蓄積するカチオン性蛍光団であり、この蓄積により蛍光強度が低下します3。TMRMは、ミトコンドリア膜電位の相対的変化の指標として使用することも、蛍光シグナルをmVに変換することを可能にする定数を決定するための追加の実験により膜貫通電圧の正確な変化を定量化するために使用することもできます。マグネシウムグリーン(MgG)は、Mg2+と結合すると蛍光を発する蛍光色素であり、マグネシウム二価陽イオン4に対するADPとATPの示差親和性に基づくATP合成の測定に使用されます。研究者は、特定の分析条件下でADPとATPの両方の特定の親和性/解離定数(Kd)を決定し、 MgG蛍光の変化をATP濃度の変化に変換します。アンプレックスUltraRed(AmR)は、ミトコンドリア呼吸中の過酸化水素およびその他のROSの生成を測定するために使用される蛍光色素です5。H 2 O2とAmR(西洋ワサビペルオキシダーゼによって触媒される)との間の反応は、530nMの蛍光によって検出可能なレゾルフィンを生成する。これらのアッセイのそれぞれを、ミトコンドリア生理学のそれぞれの側面の同時測定を提供するために、リアルタイムのミトコンドリア呼吸のアッセイに個別に追加することができ、したがって、呼吸とミトコンドリア出力との間の直接的なリンクを提供する。

馬は、馬の骨格筋のミトコンドリア含有量が非常に高いこともあり、質量特異的酸素消費量が非常に高いため、この組織はミトコンドリア生理学の研究に非常に関連性があります。高解像度の肺活量測定の開発により、この新しい技術を使用した研究は、馬の顕著な運動能力と骨格筋疾患の病態生理学の両方に対する馬の骨格筋ミトコンドリアの寄与を定義するのに役立ちました6,7,8,9,10,11,12,13,14 .ウマ骨格筋ミトコンドリア機能の研究は、この組織を大量に得ることが非終末であるため、特に有利である。したがって、ウマの被験者は、ミトコンドリア機能の完全な特徴付けに十分な組織を提供するだけでなく、ミトコンドリア生理学に関する高品質で機械的な研究のための縦断的コントロールとしても機能します。このため、ウマ骨格筋におけるミトコンドリア生理学のより堅牢な特徴付けを提供するために、ミトコンドリア膜電位、ATP合成、およびこの組織における酸素消費量の測定を補完するROSの産生を定量化するための追加のアッセイが開発されました。

Protocol

この研究は、オクラホマ州立大学の施設動物管理および使用委員会によって承認されました。この研究では、4頭のサラブレッド騸馬(17.5±1.3年、593±45 kg)を使用して、代表的な結果を生成しました。 1. 骨格筋生検標本の採取 半腱様筋(または他の関心のある筋肉)の中心から骨格筋生検(滅菌技術に従う)を取得し、軽い鎮静下で12 Gユニバーシティカレッ?…

Representative Results

提案された基準状態は、健康な座りがちなサラブレッド(強制運動によるフィットネスの増加なし)と、ミトコンドリアに富むI型骨格筋繊維を高い割合で含み、安静時代謝に近い条件(すなわち、38°CおよびpH 7.0)でインキュベートされた姿勢筋の中心から収集された新鮮な筋肉サンプルです。これらの条件下で、研究者はL N値が2.71±0.90、PN 値が62.40 ± 26.22、PN + S値が93.67 …

Discussion

高分解能呼吸計の標準出力に蛍光信号を追加することで、ミトコンドリア生理学に関する貴重な情報が得られますが、高品質のデータには蛍光信号の綿密な校正が不可欠です。MgGを使用するための元のプロトコルは、マグネシウム-アデニル酸解離定数の計算中に生成された検量線が後続のアッセイに適用できることを示唆しています4。しかしながら、MgGからの蛍光シグナ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

著者は、馬のスポーツ医学のためのジョンとデビーオクスリー寄付講座とグレイソンジョッキークラブ研究財団の寛大な支援に感謝したいと思います。

Materials

ADP Sigma-Aldrich (MilliporeSigma) A5285
Amplex UltraRed Life Technologies A36006
ATP Sigma-Aldrich (MilliporeSigma) A2383
BSA Sigma-Aldrich (MilliporeSigma) A6003
Calcium carbonate Sigma-Aldrich (MilliporeSigma) C4830
CCCP Sigma-Aldrich (MilliporeSigma) C2759
DatLab 7.0 Oroboros Inc Software to operate O2K fluororespirometer
Dithiothreitol Sigma-Aldrich (MilliporeSigma) D0632
DTPA Sigma-Aldrich (MilliporeSigma) D1133
EGTA Sigma-Aldrich (MilliporeSigma) E4378
Glutamate Sigma-Aldrich (MilliporeSigma) G1626
HEPES Sigma-Aldrich (MilliporeSigma) H7523
Horseradish peroxidase Sigma-Aldrich (MilliporeSigma) P8250
Hydrogen peroxide Sigma-Aldrich (MilliporeSigma) 516813 Must be made fresh daily prior to assay
Imidazole Sigma-Aldrich (MilliporeSigma) I2399
K-MES Sigma-Aldrich (MilliporeSigma) M8250
Magnesium chloride hexahydrate Sigma-Aldrich (MilliporeSigma) M9272
Magnesium Green Thermo Fisher Scientific M3733
Malate Sigma-Aldrich (MilliporeSigma) M1000
Mannitol Sigma-Aldrich (MilliporeSigma) M9647
Mitochondrial isolation kit Sigma-Aldrich (MilliporeSigma) MITOISO1
O2K fluororespirometer Oroboros Inc Multiple units required to run full spectrum of assays concurrently.
Phosphocreatine Sigma-Aldrich (MilliporeSigma) P7936
Potassium hydroxide Sigma-Aldrich (MilliporeSigma) P1767
Potassium lactobionate Sigma-Aldrich (MilliporeSigma) L2398
Potassium phosphate Sigma-Aldrich (MilliporeSigma) P0662
Pyruvate Sigma-Aldrich (MilliporeSigma) P2256 Must be made fresh daily prior to assay
Rotenone Sigma-Aldrich (MilliporeSigma) R8875
Succinate Sigma-Aldrich (MilliporeSigma) S2378
Sucrose Sigma-Aldrich (MilliporeSigma) 84097
Superoxide dismutase Sigma-Aldrich (MilliporeSigma) S8160
Taurine Sigma-Aldrich (MilliporeSigma) T0625
Titration pump Oroboros Inc
Titration syringes Oroboros Inc
TMRM Sigma-Aldrich (MilliporeSigma) T5428
UCH biopsy needle Millenium Surgical Corp 72-238067 Available in a range of sizes

References

  1. Wilson, D. F. Energy metabolism in muscle approaching maximal rates of oxygen utilization. Medicine and Science in Sports and Exercise. 27 (1), 54-59 (1995).
  2. Gnaiger, E. . Mitochondrial Pathways and Respiratory Control. An Introduction to OXPHOS Analysis. 4th edn. , (2014).
  3. Ehrenberg, B., Montana, V., Wei, M. D., Wuskell, J. P., Loew, L. M. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophysical Journal. 53 (5), 785-794 (1988).
  4. Chinopoulos, C., Kiss, G., Kawamata, H., Starkov, A. A. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption. Methods in Enzymology. 542, 333-348 (2014).
  5. Krumschnabel, G., et al. Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production. Methods in Molecular Biology. 1264, 245-261 (2015).
  6. Lemieux, H., et al. Mitochondrial function is altered in horse atypical myopathy. Mitochondrion. 30, 35-41 (2016).
  7. Houben, R., Leleu, C., Fraipont, A., Serteyn, D., Votion, D. M. Determination of muscle mitochondrial respiratory capacity in Standardbred racehorses as an aid to predicting exertional rhabdomyolysis. Mitochondrion. 24, 99-104 (2015).
  8. Votion, D. M., Gnaiger, E., Lemieux, H., Mouithys-Mickalad, A., Serteyn, D. Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS One. 7 (4), 34890 (2012).
  9. Votion, D. M., et al. Alterations in mitochondrial respiratory function in response to endurance training and endurance racing. Equine Veterinary Journal Supplement. (38), 268-274 (2010).
  10. Tosi, I., et al. Altered mitochondrial oxidative phosphorylation capacity in horses suffering from polysaccharide storage myopathy. Journal of Bioenergetics and Biomembranes. 50 (5), 379-390 (2018).
  11. Davis, M. S., Fulton, M. R., Popken, A. A. Effect of hyperthermia and acidosis on equine skeletal muscle mitochondrial oxygen consumption. Comparative Exercise Physiology. 17 (2), 171-179 (2021).
  12. Latham, C. M., Fenger, C. K., White, S. H. RAPID COMMUNICATION: Differential skeletal muscle mitochondrial characteristics of weanling racing-bred horses1. Journal of Animal Science. , (2019).
  13. White, S. H., Warren, L. K., Li, C., Wohlgemuth, S. E. Submaximal exercise training improves mitochondrial efficiency in the gluteus medius but not in the triceps brachii of young equine athletes. Scientific Reports. 7 (1), 14389 (2017).
  14. White, S. H., Wohlgemuth, S., Li, C., Warren, L. K. Rapid communication: Dietary selenium improves skeletal muscle mitochondrial biogenesis in young equine athletes. Journal of Animal Science. 95 (9), 4078-4084 (2017).
  15. Doerrier, C., et al. High-resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods in Molecular Biology. 1782, 31-70 (2018).
  16. Li, C., White, S. H., Warren, L. K., Wohlgemuth, S. E. Effects of aging on mitochondrial function in skeletal muscle of American American Quarter Horses. Journal of Applied Physiology. 121 (1), 299-311 (2016).
  17. Komlodi, T., et al. Comparison of mitochondrial incubation media for measurement of respiration and hydrogen peroxide production. Methods in Molecular Biology. 1782, 137-155 (2018).
  18. Gnaiger, E. Mitochondrial physiology. Bioenergetic Communications. , (2020).
  19. Li Puma, L. C., et al. Experimental oxygen concentration influences rates of mitochondrial hydrogen peroxide release from cardiac and skeletal muscle preparations. American Journal of Physiology: Regulatory, Integrated, and Comparative Physiology. 318 (5), 972-980 (2020).

Play Video

Cite This Article
Davis, M. S., Barrett, M. R. High-Resolution Fluoro-Respirometry of Equine Skeletal Muscle. J. Vis. Exp. (192), e65075, doi:10.3791/65075 (2023).

View Video