Summary

芳香族氨基酸调控细胞代谢的生物正交化学成像

Published: May 12, 2023
doi:

Summary

我们提出了一种协议,使用氧化氘(重水D2O)探测的受激拉曼散射(DO-SRS)显微镜直接可视化由氨基酸调节的细胞中的代谢活动,该显微镜与双光子激发荧光显微镜(2PEF)集成。

Abstract

必需芳香族氨基酸(AAA)是在细胞中合成新生物质和维持正常生物功能的基石。例如,充足的AAAs供应对于癌细胞维持其快速生长和分裂很重要。因此,对高度特异性、无创成像方法的需求不断增长,该方法具有最少的样品制备,以直接可视化细胞如何利用 AAA 进行 原位代谢。在这里,我们开发了一种光学成像平台,该平台将氧化氘(D2O)探测与受激拉曼散射(DO-SRS)相结合,并将DO-SRS与双光子激发荧光(2PEF)集成到单个显微镜中,以直接可视化AAA调节下HeLa细胞的代谢活动。总的来说,DO-SRS平台为单个HeLa细胞单元中新合成的蛋白质和脂质提供了高空间分辨率和特异性。此外,2PEF模式可以无标记方式检测烟酰胺腺嘌呤二核苷酸(NADH)和黄素的自发荧光信号。这里描述的成像系统与 体外 体内 模型兼容,对于各种实验都是灵活的。该协议的一般工作流程包括细胞培养、培养基制备、细胞同步、细胞固定以及使用 DO-SRS 和 2PEF 模式进行样品成像。

Introduction

苯丙氨酸(Phe)和色氨酸(Tryp)是必需的芳香族氨基酸(AAA),可以被人体吸收,合成维持正常生物学功能的新分子1。Phe是合成蛋白质,黑色素和酪氨酸所必需的,而Tryp是合成褪黑激素,血清素和烟酸2,3所必需的。然而,过量食用这些AAA可以上调雷帕霉素(mTOR)途径的哺乳动物靶标,抑制AMP活化的蛋白激酶,并干扰线粒体代谢,共同改变大分子生物合成并导致恶性前体的产生,例如健康细胞中的活性氧(ROS)4,5,6.在过量的AAA调节下直接可视化改变的代谢动力学对于了解AAA在促进癌症发展和健康细胞生长中的作用至关重要7,8,9

传统的AAA研究依赖于气相色谱(GC)10。其他方法,如磁共振成像(MRI),空间分辨率有限,因此难以对生物样品进行细胞和亚细胞分析11。最近,基质辅助激光解吸/电离(MALDI)已被开发出来,以阐明AAA在脂质和蛋白质合成中的作用,使用非侵入性生物标志物12,13,14在癌症增殖中的作用。然而,这种技术仍然存在成像深度浅、空间分辨率差和样品制备量大等问题。在细胞水平上,无毒稳定同位素,如氮-15和碳-13,可以通过多同位素成像和纳米级二次离子质谱法进行追踪,以了解它们掺入大分子中。然而,这些方法对活的生物样品15,16具有破坏性。原子力显微镜(AFM)是另一种强大的技术,可以可视化代谢动力学17。另一方面,AFM成像期间的缓慢扫描速率可能会导致热漂移导致结果的图像失真。

我们通过耦合氧化氘(D2O)探测的受激拉曼散射(DO-SRS)显微镜和无标记双光子激发荧光显微镜(2PEF)来开发一种无创双正交成像模式。这种模式在对生物样品18,19,20,21,22,23,24进行成像时实现了高空间分辨率和化学特异性。该协议介绍了DO-SRS和2PEF的应用,以检查癌症进展过程中脂质,蛋白质和氧化还原比率变化的代谢动力学。由于D2O是水的稳定同位素形式,细胞生物分子可以用氘(D)标记,因为它可以快速补偿细胞中的全身水分,通过酶交换形成碳 – 氘(C-D)键21。新合成的大分子(包括脂质、蛋白质、DNA/RNA 和碳水化合物)中的 C-D 键可以在拉曼光谱20、2122252627 的细胞静默区域中检测到。通过两个同步激光脉冲,新合成的脂质和蛋白质的C-D键可以通过高光谱成像(HSI)显示在单个细胞上,而无需用细胞毒性剂提取或标记它们。此外,SRS显微镜能够通过捕获和组合一组横截面图像来构建生物样品中选定感兴趣区域的三维(3D)模型22,26。通过高光谱和3D体积成像,DO-SRS可以获得单细胞中新合成的大分子的空间分布,以及根据AAA法规22促进癌症生长过程的细胞器类型。此外,使用2PEF,我们可以获得黄素和烟酰胺腺嘌呤二核苷酸(NADH)的自发荧光信号,具有高分辨率,深度穿透深度和生物样品中的低水平损伤21,23,24黄素和NADH自发荧光信号已被用于表征癌细胞中的氧化还原稳态和脂质过氧化22,26。因此,DO-SRS和2PEF的偶联不仅提供了癌细胞中AAA调节代谢动力学的亚细胞分析,具有高空间分布,化学特异性信息和最少的样品制备,而且该方法还减少了用有毒试剂提取或标记内源性分子的需要。在该协议中,我们首先介绍了D2O和氨基酸制备以及癌细胞培养的程序。然后,我们展示了DO-SRS成像和2PEF成像的协议。最后,我们介绍了SRS和2PEF成像的代表性结果,证明了AAA调节的脂质和蛋白质代谢变化以及癌细胞中的氧化还原比例变化。图 1 突出显示了该过程的详细示。

Protocol

1. 培养基制备 在含有 50% D2O 的 Dulbecco 改良鹰培养基 (DMEM) 中制备 10 mL 对照和过量 AAA。对于对照介质,在 15 mL 锥形管中测量 10 mg DMEM 粉末与 4.7 mL 双蒸水 (ddH2O) 并混合。DMEM粉末含有标准浓度的所有氨基酸。彻底涡旋并倒置管,以确保溶液充分混合。加入 4.7 mL D2O、0.5 mL 胎牛血清 (5% FBS) 和 0.1 mL 青霉素/链霉素 (1%)。彻底涡旋并倒置管,…

Representative Results

将浓度为 15x 的过量 AAA 添加到含 50% D2O 的细胞培养基中,在 HeLa 细胞中产生了新合成的脂质和蛋白质的不同 C-D 拉曼带(图 2B)。以前的实验是用不同的浓度水平进行的,例如2x和5x,虽然没有提供数据,但15x浓度产生了新合成的脂质和蛋白质的最明显的C-D拉曼带。具体来说,通过研究脂滴(LDs),我们注意到15x Phe和15x Tryp分别在2,143 cm-1和2,172 cm-1处诱导新合…

Discussion

DO-SRS和2PEF成像已被应用于研究各种离体模型中的代谢动力学,包括果蝇和人体组织21,22,23,24,26,27,33。本研究中使用的成像方式集成了DO-SRS和2PEF显微镜,无需使用细胞毒性试剂进行分子提取或标记,并且需要最少的样…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢李亚娟博士和冯安东尼博士的技术支持,以及Fraley实验室的细胞系。我们感谢UCSD,NIH U54CA132378,NIH 5R01NS111039,NIH R21NS125395,NIHU54DK134301,NIHU54 HL165443和Hellman Fellow奖的启动资金。

Materials

10 mL Serological Pipettes  Avantor (by VWR) 75816-100 https://us.vwr.com/store/product?keyword=75816-100
15 mL Conical Centrifuge Tube VWR 89039-664 https://mms.mckesson.com/product/1001859/VWR-International-89039-664
16% Formaldehyde, Methanol-free ThermoFisher Scientific 28906 https://www.thermofisher.com/order/catalog/product/28906
24-well plate Fisherbrand FB0112929 https://www.fishersci.com/shop/products/24-well-tc-multidish-100-cs/FB012929#?keyword=FB012929
25 mm Syringe Filter, 2 μm PES Foxx Life Sciences 381-2216-OEM https://www.foxxlifesciences.com/collections/pes-syringe-filters/products/381-2216-oem?variant=16274336003
460 nm Filter Cube Olympus OCT-ET460/50M32
AC Adapters of the Power Supply for LD OBIS 6 Laser Remote Olympus Supply power to the laser
Band-pass Filter KR Electronics KR2724 8 MHz
BNC 50 Ohm Terminator  Mini Circuits STRM-50
BNC Cable Thorlabs 2249-C Coaxial Cable, BNC Male/Male
Broadband Dielectric Mirror Thorlabs BB1-E03 750 – 1100 nm
Centrifuge
Condenser Olympus
Cover Glass Corning 2850-25 https://ecatalog.corning.com/life-sciences/b2b/NL/en/Glassware/Cover-Glass/Corning%C2%AE-Square-%231%C2%BD-Cover-Glass/p/2850-25
DC power supply TopWard 6302D
Dichroic Mount Thorlabs KM100CL
Dimethyl Sulfoxide Cell Culture Reagent mpbio  196055 https://www.mpbio.com/0219605525-dimethyl-sulfoxide-cf
Dulbecco's Modified Eagle’s Medium without Methionine, Threonine, and Sodium Pyruvate MilliporeSigma 38210000 https://www.usbio.net/media/D9800-22/dulbeccorsquos-mem-dmem-wsodium-bicarbonate-wo-methionine-threonine-sodium-pyruvate-powder
With Sodium Bicarbonate and without Methionine, Threonine, and Sodium Pyruvate 
Dulbecco’s Modified Eagle’s Medium Corning MT10027CV https://www.fishersci.com/shop/products/dmem-dulbecco-s-modified-eagle-s-medium-4/MT10027CV#:~:text=Dulbecco's%20Modified%20Eagle's%20Medium%20
FIJI ImageJ ImageJ Version 1.53t 24 August 2022 https://imagej.net/software/fiji/downloads
Heavy Water (Deuterium Oxide) Cambridge Isotope Laboratories, Inc. 7732-18-5 https://shop.isotope.com/productdetails.aspx?itemno=DLM-4-1L
Hela Cells ATCC CCL-2 https://www.atcc.org/products/ccl-2
Hemocymeter MilliporeSigma Z359629-1EA https://www.sigmaaldrich.com/US/en/product/sigma/z359629?gclid=Cj0KCQiA37KbBhDgARIsAI
zce15A5FIy0WS7I6ec2KVk
QPXVMEqlAnYis_bKB6P6lr
SIZ-wAXOyAELIaAhhEEAL
w_wcB&gclsrc=aw.ds
High O.D. Bandpass Filter Chroma Technology ET890/220m Filter the Stokes beam and transmit the pump beam
HyClone Fetal Bovine Serum (FBS) Cytiva  SH300880340 https://www.fishersci.com/shop/products/hyclone-fetal-bovine-serum-u-s-standard-4/SH300880340
HyClone Trypsin 0.25% (1x) Solution Cytiva SH30042.02 https://www.cytivalifesciences.com/en/us/shop/cell-culture-and-fermentation/reagents-and-supplements/cell-disassociation-reagents/hyclone-trypsin-protease-p-00445
Integrated SRS Laser System Applied Physics & Electronics, Inc. picoEMERALD picoEMERALD provides an output pulse at 1031 nm with 6-ps pulse width and 80-MHz repetition rate, which serves as the Stokes beam.  The frequency doubled beam at 532 nm is used to synchronously seed a picosecond optical parametric oscillator (OPO) to produce a mode-locked pulse train with five~6 ps pulse width (the idler beam of the OPO is blocked with an,interferometric filter). The output wavelength of the OPO is tunable from 720–950 nm, which serves as the pump beam. The intensity of the 1031 nm Stokes beam is modulated sinusoidally by a built-in EOM at 8 MHz with a modulation depth of more than 90%. The pump beam is spatially overlapped with the Stokes beam by using a dichroic mirror inside picoEMERALD. The temporal overlap between pump and Stokes pulses are achieved with a built-in delay stage and optimized by the SRS signal of pure D2O at the microscope.
Inverted Laser-scanning Microscope Olympus FV1200MPE
IX3-CBH Control box Olympus Control the laser-scanning microscope
Kinematic Mirror Mount Thorlabs POLARIS-K1-2AH 2 Low-Profile Hex Adjusters
L-Phenalynine Sigma P5482-25G https://www.sigmaaldrich.com/US/en/product/sigma/p5482
L-Tryptophan Sigma T8941-25G https://www.sigmaaldrich.com/US/en/product/sigma/t8941
LabSpec 6 Horiba XploRA N/A https://www.horiba.com/gbr/scientific/products/detail/action/show/Product/labspec-6-spectroscopy-suite-software-1843/
Lock-In Amplifier Zurich Instruments N/A https://www.zhinst.com/americas/en/products/shfli-lock-in-amplifier
Long-pass Dichroic Beam Splitter Semrock Di02-R980-25×36 980 nm laser BrightLine single-edge laser-flat dichroic beamsplitter
MATLAB MathWorks Version: R2022b https://www.mathworks.com/products/new_products/latest_features.html
Microscope Slides Fisherbrand 12-550-003 https://www.fishersci.com/shop/products/fisherbrand-selectfrost-microscope-slides-9/12550003#?keyword=12-550-003
Microscopy Imaging Software Olympus FluoView
MPLN 100x, Olympus Olympus MPLAPON https://www.olympus-ims.com/en/microscope/mplapon/#!cms[focus]=cmsContent11364
MPLN 50x, Olympus Olympus MPLAPON  https://www.olympus-ims.com/en/microscope/mplapon/#!cms[focus]=cmsContent11363
NA Oil Condenser Olympus  6-U130 https://www.hitechinstruments.com/Product-Details/olympus-achromatic-aplanatic-high-na-condneser
Nail Polish Wet n Wild B01EO2G5O4 https://www.amazon.com/dp/B01EO2G5O4/ref=cm_sw_r_api_i_E609VVDWW
HHQP38FXXDC_0
Origin OriginLab Origin 2022b (9.95) https://www.originlab.com/index.aspx?go=PRODUCTS/Origin
Parafilm Fisher Scientific S37440 https://www.fishersci.com/shop/products/parafilm-m-wrapping-film-3/p-2379782
PBS 1x (Dulbecco's Phosphate Buffered Saline) Thermofischer – Gibco 14040117 https://www.thermofisher.com/order/catalog/product/14040117?SID=srch-hj-14040117
Penicillin/Streptomycin Thermofischer – Gibco 15140122 https://www.thermofisher.com/order/catalog/product/15140122
Periscope Assembly Thorlabs RS99 Includes the top and bottom units, Ø1" post, and clamping fork.
picoEmerald System A.P.E N/A https://www.ape-berlin.de/en/cars-srs/
Shielded Box with BNC Connectors Pomona Electronics 2902 Aluminum Box with Cover, BNC Female/Female
Si Photodiode Detector Home Built N/A DYI series
Silicon Wafer
Spacers Grace Bio-Labs 654008 https://gracebio.com/product/secureseal-imaging-spacers-654008/
Spontaneous Raman spectroscopy Horiba XploRA N/A https://www.horiba.com/int/products/detail/action/show/Product/xploratm-plus-1528/
Stimulated Raman Scattering Microscopy Home Built N/A
Touch  Panel Controller Olympus Control the X-Y direction of the laser-scanning microscope
Trypan Blue 0.4% (0.85% NaCl)  Lonza 17-942E https://bioscience.lonza.com/lonza_bs/US/en/Culture-Media-and-Reagents/p/000000000000181876/Trypan-Blue%2C-0-4%25-Solution"
Tweezers Kaverme – Amazon B07RNVXXV1 https://www.amazon.com/Precision-Anti-Static-Electronics-Laboratory-Jewelry-Making/dp/B07RNVXXV1"
Two Photon Excitation Fluorescence Microscopy Home Built N/A
Weighing Paper  VWR 12578-165 https://us.vwr.com/store/product/4597617/vwr-weighing-paper
Zurich LabOneQ Software Zurich Instruments Control the Zurich lock-in amplifier

References

  1. Wu, G. Functional amino acids in nutrition and health. Amino Acids. 45 (3), 407-411 (2013).
  2. Wei, Z., Liu, X., Cheng, C., Yu, W., Yi, P. Metabolism of amino acids in cancer. Frontiers in Cell and Developmental Biology. 8, 603837 (2020).
  3. Parthasarathy, A., et al. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences. 5, 29 (2018).
  4. Wang, H., et al. l-tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. The Journal of Nutrition. 145 (6), 1156-1162 (2015).
  5. Saxton, R. A., Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell. 168 (6), 960-976 (2017).
  6. Mossmann, D., Park, S., Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews. Cancer. 18 (12), 744-757 (2018).
  7. Kimura, T., Watanabe, Y. Tryptophan protects hepatocytes against reactive oxygen species-dependent cell death via multiple pathways including Nrf2-dependent gene induction. Amino Acids. 48 (5), 1263-1274 (2016).
  8. Ma, Q., et al. Dietary supplementation with aromatic amino acids decreased triglycerides and alleviated hepatic steatosis by stimulating bile acid synthesis in mice. Food and Function. 12 (1), 267-277 (2021).
  9. Cheng, C., et al. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. International Journal of Biological Sciences. 15 (8), 1654-1663 (2019).
  10. Lubes, G., Goodarzi, M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. Journal of Pharmaceutical and Biomedical Analysis. 147, 313-322 (2018).
  11. Di Gialleonardo, V., Wilson, D. M., Keshari, K. R. The potential of metabolic imaging. Seminars in Nuclear Medicine. 46 (1), 28-39 (2016).
  12. Bowman, A. P., et al. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Analytical and Bioanalytical Chemistry. 412 (10), 2277-2289 (2020).
  13. Murphy, R. C., Hankin, J. A., Barkley, R. M. Imaging of lipid species by MALDI mass spectrometry. Journal of Lipid Research. 50, 317-322 (2009).
  14. Pirman, D. A., et al. Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PLoS One. 8 (4), e61379 (2013).
  15. Li, Z., et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nature Communications. 12 (1), 2869 (2021).
  16. Miyagi, M., Kasumov, T. Monitoring the synthesis of biomolecules using mass spectrometry. Philosophical Transactions. Series A, Mathematical, Physical and Engineering Sciences. 374 (2079), 20150378 (2016).
  17. Wang, T., Shogomori, H., Hara, M., Yamada, T., Kobayashi, T. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy. 생화학. 51 (1), 74-82 (2012).
  18. Fung, A. A., Shi, L. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 12 (6), e1501 (2020).
  19. Shi, L., Fung, A. A., Zhou, A. Advances in stimulated Raman scattering imaging for tissues and animals. Quantitative Imaging in Medicine and Surgery. 11 (3), 1078-1101 (2021).
  20. Yamakoshi, H., et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. Journal of the American Chemical Society. 133 (16), 6102-6105 (2011).
  21. Shi, L., et al. Optical imaging of metabolic dynamics in animals. Nature Communications. 9 (1), 2995 (2018).
  22. Bagheri, P., Hoang, K., Fung, A. A., Hussain, S., Shi, L. Visualizing cancer cell metabolic dynamics regulated with aromatic amino acids using DO-SRS and 2PEF microscopy. Frontiers in Molecular Biosciences. 8, 779702 (2021).
  23. Li, Y., et al. Direct imaging of lipid metabolic changes in drosophila ovary during aging using DO-SRS microscopy. Frontiers in Aging. 2, 819903 (2022).
  24. Li, Y., Zhang, W., Fung, A. A., Shi, L. DO-SRS imaging of metabolic dynamics in aging Drosophila. Analyst. 146 (24), 7510-7519 (2021).
  25. Zhang, L., et al. Spectral tracing of deuterium for imaging glucose metabolism. Nature Biomedical Engineering. 3 (5), 402-413 (2019).
  26. Fung, A. A., et al. Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer lipid droplet metabolism. Frontiers in Oncology. 12, 858017 (2022).
  27. Li, Y., Zhang, W., Fung, A. A., Shi, L. DO-SRS imaging of diet regulated metabolic activities in Drosophila during aging processes. Aging Cell. 21 (4), e13586 (2022).
  28. Shi, L., Wei, M., Min, W. Highly-multiplexed tissue imaging with raman dyes. Journal of Visualized Experiments. (182), e63547 (2022).
  29. Rysman, E., et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. 암 연구학. 70 (20), 8117-8126 (2010).
  30. Lisec, J., Jaeger, C., Rashid, R., Munir, R., Zaidi, N. Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia. BMC Cancer. 19 (1), 501 (2019).
  31. Thiam, A. R., Dugail, I. Lipid droplet-membrane contact sites – from protein binding to function. Journal of Cell Science. 132 (12), (2019).
  32. Schott, M. B., et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. The Journal of Cell Biology. 218 (10), 3320-3335 (2019).
  33. Hoang, K., et al. Subcellular resolution DO-SRS and 2PEF imaging of metabolic dynamics regulated by L-methionine in amyotrophic lateral sclerosis. Optical Biopsy XXI: Toward Real-Time Spectroscopic Imaging and Diagnosis. SPIE. 1237303, 6-13 (2023).
  34. Jang, H., et al. Super-resolution stimulated Raman scattering microscopy with A-PoD. bioRxiv. , (2022).
  35. Li, Y., et al. Optical metabolic imaging uncovers sex- and diet-dependent lipid changes in aging drosophila brain. bioRxiv. , (2022).
  36. Zhang, W., et al. Multi-molecular hyperspectral PRM-SRS imaging. bioRxiv. , (2022).
  37. Wei, M., et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 116 (14), 6608-6617 (2019).
  38. Chang, T., et al. Non-invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label-free multiphoton microscopy. Biomaterials. 34 (34), 8607-8616 (2013).
  39. Leica TCS SP8 CARS CARS Microscope – Label Free Imaging. Leica Microsystems Available from: https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8-cars/downloads/ (2023)
check_url/kr/65121?article_type=t

Play Video

Cite This Article
Bagheri, P., Hoang, K., Kuo, C., Trivedi, H., Jang, H., Shi, L. Bioorthogonal Chemical Imaging of Cell Metabolism Regulated by Aromatic Amino Acids. J. Vis. Exp. (195), e65121, doi:10.3791/65121 (2023).

View Video