Summary

解剖成年小鼠血管纹以进行单核测序或免疫染色

Published: April 21, 2023
doi:

Summary

血管纹对于内耳蜗电位的产生至关重要。在这里,我们介绍了成年小鼠血管纹的解剖以进行单核测序或免疫染色。

Abstract

由血管纹产生的内耳蜗电位对于维持有利于适当的毛细胞机械转导和最终听力的环境至关重要。血管纹的病变可导致听力下降。解剖成体血管纹可以集中捕获单核,随后进行单核测序和免疫染色。这些技术用于在单细胞水平上研究血管纹的病理生理学。

单核测序可用于血管纹的转录分析。同时,免疫染色在识别特定细胞群方面仍然有用。这两种方法都需要适当的血管纹夹层作为先决条件,这可能被证明在技术上具有挑战性。

Introduction

耳蜗由三个充满液体的腔室组成,即前庭鳞片、中鳞片和鼓鳞片。前庭鳞片和鼓鳞片均含有外淋巴液,其具有高浓度的钠(138 mM)和低浓度的钾(6.8 mM)1。Scala介质含有内淋巴液,其具有高浓度的钾(154mM)和低浓度的钠(0.91mM)1,2,3这种离子浓度的差异可以称为耳蜗内电位(EP),主要是由钾离子沿着耳蜗侧壁通过血管纹(SV)中的各种离子通道和间隙连接产生的4,5,6,7,8,9,10,11 .SV是一种异质的,高度血管化的组织,排列在耳蜗侧壁的内侧,包含三种主要细胞类型:边缘细胞,中间细胞和基底细胞12图1)。

边缘细胞通过紧密连接连接,形成SV的最内侧表面。顶膜面向斯卡拉介质的内淋巴,并通过各种通道(包括KCNE1 / KCNQ1,SLC12A2和Na + – K + – ATP酶(NKA)5,10,13,14)促进钾离子转运到内淋巴中。中间细胞是位于边缘细胞和基底细胞之间的色素细胞,并使用KCNJ10(Kir 4.1)15,16促进钾通过SV运输。基底细胞靠近耳蜗侧壁,与螺旋韧带的纤维细胞密切相关,以促进外淋巴12的钾循环。SV的病理学与许多耳科疾病有关17,18。在主要SV细胞类型(如Kcnq1,Kcne1,Kcnj10和Cldn11)中表达的基因突变可导致耳聋和SV功能障碍,包括EP19,20,21,22,23的丢失。除了三种主要细胞类型外,SV中还有其他研究较少的细胞类型,例如梭形细胞22,根细胞12,24,巨噬细胞25,周细胞26和内皮细胞27,其作用不完全确定涉及离子稳态和EP 28的产生。

与批量RNA测序相比,单核RNA测序(sNuc-Seq)提供有关细胞异质性的信息,而不是一组细胞29的mRNA平均值,并且在研究异质SV30时特别有用。例如,sNuc-Seq已经产生了转录分析,表明纺锤体和根细胞可能在EP生成,听力损失和梅尼埃病中发挥作用18。各种SV细胞类型的进一步转录表征可以为我们提供有关SV相关听力波动和听力损失的不同机制和亚型病理生理学的宝贵信息。这些精细的内耳结构的收获对于最佳组织分析至关重要。

在本研究中,描述了从成年小鼠耳蜗中获取和分离血管纹以进行sNuc-Seq或免疫染色的显微解剖方法。需要解剖成年小鼠SV以了解各种SV细胞类型并进一步表征它们在听力中的作用。

Protocol

所有动物实验和程序均按照美国国立神经系统疾病和中风研究所动物护理和使用委员会以及国立卫生研究院国家耳聋和其他沟通障碍研究所批准的协议进行。所有实验方案均由美国国立神经系统疾病和中风研究所动物护理和使用委员会以及美国国立卫生研究院国家耳聋和其他沟通障碍研究所批准。所有方法均按照美国国立神经系统疾病和中风研究所动物护理和使用委员会以及国立卫生研究院国家?…

Representative Results

我们提出了一种分离用于sNuc-Seq或免疫染色的SV的方法。耳蜗相对于SV的相关解剖结构(图1)可以帮助用户更好地了解SV的组织和解剖方案的步骤。 相关视频详细介绍了从P30鼠标显微解剖SV的每个步骤, 图2显示了这种解剖和分离SV的关键步骤的快照。 sNuc-Seq可用于研究异质SV中各种细胞的转录谱。一种可视化方?…

Discussion

在单细胞测序出现之前,许多研究人员使用批量组织分析,这只能分析跨细胞平均的转录组。特别是,单细胞和sNuc-Seq使得分离单细胞或单核的转录组成为可能,分别32。在这种情况下,可以鉴定边缘细胞、中间细胞和基底细胞以及梭形细胞的单核转录组30。这使得能够研究SV细胞类型之间的转录异质性,并可用于将来研究这些细胞类型对SV功能的贡献,包括EP的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了美国国立卫生研究院校内研究计划,NIDCD到MH(DC000088)的部分支持

Materials

10-µm filter (Polyethylenterephthalat) PluriSelect #43-50010-01 Filter tissue during sNuc-Seq
18 x 18 mm cover glass Fisher Scientific 12-541A Cover slip to mount SV
30-µm filter (Polyethylenterephthalat) PluriSelect #43-50030-03 Filter tissue during sNuc-Seq
75 x 25 mm Superfrost Plus/Colorforst Plus Microslide Daigger EF15978Z Microslide to mount SV on
C57BL/6J Mice The Jackson Laboratory RRID: IMSR_JAX:000664 General purpose mouse strain that has pigment more easily seen in the intermediate cells of the SV.
Cell Counter Logos Biosystems L20001 Used for cell counting
Chalizon curette 5'', size 3 2.5 mm Biomedical Research Instruments 15-1020 Used to transfer SV
Chromium Next GEM single Cell 3' GEM Kit v3.1 Chromium PN-1000141 Generates single cell 3' gene expression libraries
Clear nail polish Fisher Scientific NC1849418 Used for sealing SV mount
Corning Falcon Standard Tissue Culture Dishes, 24 well Corning 08-772B Culture dish used to hold specimen during dissection
DAPI Invitrogen D1306, RRID: AB_2629482 Stain used for nucleus labeling
Dounce homogenizer Sigma-Aldrich D8938 Used to homogenize tissue for sNuc-seq
Dumont #5 Forceps Fine Science Tools 11252-30 General forceps for dissection
Dumont #55 Forceps Fine Science Tools 11255-20 Forceps with fine tip that makes SV manipulation easier
Fetal Bovine Serum ThermoFisher 16000044 Used for steps of sNuc-Seq
Glue stick Fisher Scientific NC0691392 Used for mounting SV
GS-IB4 Antibody Molecular Probes I21411, RRID: AB-2314662 Antibody used for capillary labeling
KCNJ10-ZsGreen Mice n/a n/a Transgenic mouse that expresses KCNJ10-ZsGreen, partiularly in the intermediate cells of the SV.
MgCl2 ThermoFisher AM9530G Used for steps of sNuc-Seq
Mounting reagent ThermoFisher #S36940 Mounting reagent for SV
Multiwell 24 well plate Corning #353047 Plate used for immunostaining
NaCl ThermoFisher AAJ216183 Used for steps of sNuc-Seq
Nonidet P40 Sigma-Aldrich 9-16-45-9 Used for steps of sNuc-Seq
Nuclease free water ThermoFisher 4387936 Used for steps of sNuc-Seq
Orbital shaker Silent Shake SYC-2102A Used for steps of immunostaining
PBS ThermoFisher J61196.AP Used for steps of immunostaining and dissection
RNA Later Invitrogen AM7021 Used for preservation of SV for sNuc-Seq
Scizzors Fine Science Tools 14058-09 Used for splitting mouse skull
Tris-HCl Sigma-Aldrich 15506017 Used for steps of sNuc-Seq
Trypan blue stain Gibco 15250061 Used for cell counting
Tween20 ThermoFisher AAJ20605AP  Used for steps of sNuc-Seq
Zeiss STEMI SV 11 Apo stereomicroscope Zeiss n/a Microscope used for dissections

References

  1. Bosher, S. K., Warren, R. L. Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proceedings of the Royal Society of London. Series B. Biological Sciences. 171 (1023), 227-247 (1968).
  2. Patuzzi, R. Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential. Hearing Research. 277 (1-2), 4-19 (2011).
  3. Wangemann, P. K+ cycling and the endocochlear potential. Hearing Research. 165 (1-2), 1-9 (2002).
  4. Adachi, N., et al. The mechanism underlying maintenance of the endocochlear potential by the K+ transport system in fibrocytes of the inner ear. The Journal of Physiology. 591 (18), 4459-4472 (2013).
  5. Hibino, H., Nin, F., Tsuzuki, C., Kurachi, Y. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Archiv. 459 (4), 521-533 (2010).
  6. Lang, F., Vallon, V., Knipper, M., Wangemann, P. Functional significance of channels and transporters expressed in the inner ear and kidney. American Journal of Physiology. Cell Physiology. 293 (4), C1187-C1208 (2007).
  7. Liu, W., Schrott-Fischer, A., Glueckert, R., Benav, H., Rask-Andersen, H. The human "cochlear battery"-claudin-11 barrier and ion transport proteins in the lateral wall of the cochlea. Frontiers in Molecular Neuroscience. 10, 239 (2017).
  8. Marcus, D. C., Wu, T., Wangemann, P., Kofuji, P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. American Journal of Physiology. Cell Physiology. 282 (2), C403-C407 (2002).
  9. Spicer, S. S., Schulte, B. A. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hearing Research. 56 (1-2), 53-64 (1991).
  10. Wangemann, P., Liu, J., Marcus, D. C. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research. 84 (1-2), 19-29 (1995).
  11. Yoshida, T., et al. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential. Pflugers Archiv. 468 (9), 1609-1619 (2016).
  12. Johns, J. D., Adadey, S. M., Hoa, M. The role of the stria vascularis in neglected otologic disease. Hearing Research. 428, 108682 (2023).
  13. Kim, J., Ricci, A. J. In vivo real-time imaging reveals megalin as the aminoglycoside gentamicin transporter into cochlea whose inhibition is otoprotective. Proceedings of the National Academy of Sciences. 119 (9), e2117846119 (2022).
  14. Zdebik, A. A., Wangemann, P., Jentsch, T. J. Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology. 24, 307-316 (2009).
  15. Chen, J., Zhao, H. B. The role of an inwardly rectifying K+ channel (Kir4.1) in the inner ear and hearing loss. 신경과학. 265, 137-146 (2014).
  16. Steel, K. P., Barkway, C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development. 107 (3), 453-463 (1989).
  17. Ito, T., Nishio, A., Wangemann, P., Griffith, A. J. Progressive irreversible hearing loss is caused by stria vascularis degeneration in an Slc26a4-insufficient mouse model of large vestibular aqueduct syndrome. 신경과학. 310, 188-197 (2015).
  18. Gu, S., et al. Characterization of rare spindle and root cell transcriptional profiles in the stria vascularis of the adult mouse cochlea. Scientific Reports. 10 (1), 18100 (2020).
  19. Gow, A., et al. Deafness in claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. The Journal of Neuroscience. 24 (32), 7051-7062 (2004).
  20. Chang, Q., et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Molecular Medicine. 7 (8), 1077-1086 (2015).
  21. Faridi, R., et al. Mutational and phenotypic spectra of KCNE1 deficiency in Jervell and Lange-Nielsen Syndrome and Romano-Ward Syndrome. Human Mutation. 40 (2), 162-176 (2019).
  22. Wangemann, P., et al. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Medicine. 2, 30 (2004).
  23. Kitajiri, S. -. I., et al. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hearing Research. 187 (1-2), 25-34 (2004).
  24. Jagger, D. J., Nevill, G., Forge, A. The membrane properties of cochlear root cells are consistent with roles in potassium recirculation and spatial buffering. Journal of the Association for Research in Otolaryngology. 11 (3), 435-448 (2010).
  25. Ito, T., Kurata, N., Fukunaga, Y. Tissue-resident macrophages in the stria vascularis. Frontiers in Neurology. 13, 818395 (2022).
  26. Zhang, J., et al. VEGFA165 gene therapy ameliorates blood-labyrinth barrier breakdown and hearing loss. JCI Insight. 6 (8), e143285 (2021).
  27. Shi, X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hearing Research. 338, 52-63 (2016).
  28. Gu, S., et al. Identification of potential Meniere’s disease targets in the adult stria vascularis. Frontiers in Neurology. 12, 630561 (2021).
  29. Fischer, J., Ayers, T. Single nucleus RNA-sequencing: how it’s done, applications and limitations. Emerging Topics in Life Sciences. 5 (5), 687-690 (2021).
  30. Korrapati, S., et al. Single cell and single nucleus RNA-Seq reveal cellular heterogeneity and homeostatic regulatory networks in adult mouse stria vascularis. Frontiers in Molecular Neuroscience. 12, 316 (2019).
  31. Pyle, M. P., Hoa, M. Applications of single-cell sequencing for the field of otolaryngology: A contemporary review. Laryngoscope Investigative Otolaryngology. 5 (3), 404-431 (2020).
  32. Hwang, B., Lee, J. H., Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine. 50 (8), 1-14 (2018).
  33. Shafer, M. E. R. Cross-species analysis of single-cell transcriptomic data. Frontiers in Cell and Developmental Biology. 7, 175 (2019).
  34. Chen, G., Ning, B., Shi, T. Single-cell RNA-Seq technologies and related computational data analysis. Frontiers in Genetics. 10, 317 (2019).
  35. Longo, S. K., Guo, M. G., Ji, A. L., Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics. 22 (10), 627-644 (2021).
  36. Kim, N., Kang, H., Jo, A., Yoo, S. A., Lee, H. O. Perspectives on single-nucleus RNA sequencing in different cell types and tissues. Journal of Pathology and Translational Medicine. 57 (1), 52-59 (2023).
  37. Grindberg, R. V., et al. RNA-sequencing from single nuclei. Proceedings of the National Academy of Sciences. 110 (49), 19802-19807 (2013).
  38. Montgomery, S. C., Cox, B. C. Whole mount dissection and immunofluorescence of the adult mouse cochlea. Journal of Visuazlied Experiments. (107), e53561 (2016).

Play Video

Cite This Article
Strepay, D., Olszewski, R., Taukulis, I., Johns, J. D., Gu, S., Hoa, M. Dissection of Adult Mouse Stria Vascularis for Single-Nucleus Sequencing or Immunostaining. J. Vis. Exp. (194), e65254, doi:10.3791/65254 (2023).

View Video