Summary

基于图像的方法研究气孔谱系细胞中的膜运输事件

Published: May 12, 2023
doi:

Summary

这里介绍了几种常用的方法来研究质膜受体激酶的膜运输事件。本手稿描述了详细的方案,包括植物材料制备、药物治疗和共聚焦成像设置。

Abstract

在真核细胞中,膜成分(包括蛋白质和脂质)在时空上运输到内膜系统内的目的地。这包括新合成的蛋白质向细胞表面或细胞外部的分泌运输,细胞外货物或质膜成分进入细胞的内吞运输,以及货物在亚细胞器之间的循环或穿梭运输等。膜运输事件对于所有真核细胞的发育、生长和环境适应至关重要,因此受到严格的监管。细胞表面受体激酶感知来自细胞外空间的配体信号,经历分泌和内吞转运。本文介绍了使用质膜定位的富含亮氨酸重复受体激酶ERL1来研究膜运输事件的常用方法。这些方法包括植物材料制备、药物治疗和共聚焦成像设置。为了监测ERL1的时空调控,本研究描述了ERL1与多泡体标志蛋白RFP-Ara7之间的共定位分析,这两种蛋白质的时间序列分析,以及用膜运输抑制剂brefeldin A和wortmannin处理的ERL1-YFP的z-stack分析。

Introduction

膜运输是一种保守的细胞过程,它将膜成分(也称为货物),包括蛋白质、脂质和其他生物产物,在真核细胞内的不同细胞器之间或穿过质膜进出细胞外空间1。该过程由称为内膜系统的膜和细胞器的集合促进,内膜系统由核膜、内质网、高尔基体、液泡/溶酶体、质膜和多个内体组成1.内膜系统能够使用在这些细胞器之间穿梭的动态囊泡对膜组件进行修饰、包装和运输。膜运输事件对细胞发育、生长和环境适应至关重要,因此受到严格而复杂的监管2。目前,分子生物学、化学生物学、显微镜和质谱的多种方法已被开发并应用于膜运输领域,并极大地促进了对内膜系统时空调控的理解3,4。分子生物学用于对参与膜运输的假定参与者进行经典的遗传操作,例如改变目标蛋白质的基因表达或用某些标签标记感兴趣的蛋白质。化学生物学中的工具包括使用专门干扰某些路线4,5的交通的分子。质谱法对于鉴定通过生化方法机械分离的细胞器中的成分非常强大 3,4.然而,膜交通是一个动态、多样和复杂的生物过程1。为了可视化各种条件下活细胞中的膜运输过程,光学显微镜是必不可少的工具。先进的显微镜技术不断取得进展,以克服测量事件的效率、动力学和多样性的挑战4.在这里,本研究侧重于化学/药理生物学,分子生物学和显微镜中广泛采用的方法,以研究自然简化和实验可访问的系统(气孔发育过程)中的膜运输事件。

气孔是植物空中表面上的微孔,它们打开和关闭以促进内部细胞与环境之间的气体交换6,7,8。因此,气孔对于光合作用和蒸腾作用至关重要,这两个事件对植物的生存和生长至关重要。气孔发育通过环境线索动态调整,以优化植物对周围环境的适应9.追溯到2002年的研究,受体蛋白太多嘴(TMM)的鉴定为研究模式植物拟南10气孔发育的分子机制打开了新时代。仅仅几十年后,一种经典的信号通路就被确定了。从上游到下游,该途径包括表皮模式因子(EFP)家族中的一组分泌肽配体,EREECTA(ER)家族中的几种细胞表面富含亮氨酸重复(LRR)受体激酶,LRR受体蛋白TMM,MAPK级联反应和几种bHLH转录因子,包括SPEECHLESS(SPCH),MUTE,FAMA和SCREAM(SCRM)11,12,13,14 15,16,17,18,19,20,21,22,23,24,25,26.先前的工作表明,其中一种受体激酶ER-LIKE 1(ERL1)在EPF感知20时表现出活跃的亚细胞行为。ERL2还在质膜和一些细胞内细胞器之间动态运输27。阻断膜运输步骤会导致气孔图案异常,导致叶片表面出现气孔簇28。这些结果表明,膜交通在气孔发育中起着至关重要的作用。本研究描述了一种使用蛋白质 – 蛋白质亚细胞共定位分析结合使用某些膜运输抑制剂的药物治疗来时空研究ERL1动力学的方案。

Protocol

1. 溶液的制备 通过将 15 mL 漂白剂与 35 mL 蒸馏水和 50 μL Triton X-100 混合来制备种子灭菌溶液。 通过将BFA粉末溶解在乙醇中至终浓度为10mM(储备液)来制备布雷菲尔丁A(BFA)溶液。通过将Wm粉末溶解在DMSO中至终浓度为10mM(储备液)来制备麦芽汁(Wm)溶液。 2. 播下种子 将来自每个所需转基因植物的 10-50 颗种子等分到 1.5 mL …

Representative Results

先前的一项研究表明,ERL1是一种经历动态膜运输事件的活性受体激酶20。ERL1是质膜上的跨膜LRR受体激酶。内质网中新合成的ERL1在高尔基体中处理并进一步运输到质膜。质膜上的ERL1分子可以使用其细胞外LRR结构域18感知EPF配体。在被抑制性EPFs(包括EPF1)激活后,ERL1被内化到内体中,运输到多泡体(MVB),然后运输到液泡中降解以终止信号20。…

Discussion

内膜系统将真核细胞的细胞质分离成不同的区室,从而使这些细胞器具有专门的生物学功能。为了在正确的时间将货物蛋白和大分子运送到它们的最终目的地,许多囊泡被引导到这些细胞器之间穿梭。高度调控的膜运输事件在细胞的活力、发育和生长中起着重要作用。调节这一关键而复杂的过程的机制仍然知之甚少。

这里已经描述了几种方法,用于观察膜蛋白的亚细胞定位?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国家科学基金会(IOS-2217757)(X.Q.)和阿肯色大学医学科学(UAMS)布朗森基金会奖(H.Z.)的支持。

Materials

10 mL syringes VWR BD309695 Vacuum samples
Brefeldin A (BFA) Sigma B7651 membrane trafficking drug
Confocal Microscope Leica Lecia SP8 TCS with LAS-X software package Imaging
Dissecting Forceps VWR 82027-402 Genetic cross
Fiji NIH https://imagej.net/Fiji Image processing
Leica LAS AF software Leica http://www.leica-microsystems.com Image processing
transgenic seeds of ERL1-YFP Qi, X. et al. The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate. Elife. 9, doi:10.7554/eLife.58097, (2020).
transgenic seeds of RFP-Ara7 Ebine, K. et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol. 13 (7), 853-859, doi:10.1038/ncb2270, (2011).
Wortmannin (Wm) Sigma W1628 membrane trafficking drug

References

  1. Aniento, F., Sanchez de Medina Hernandez, V., Dagdas, Y., Rojas-Pierce, M., Russinova, E. Molecular mechanisms of endomembrane trafficking in plants. Plant Cell. 34 (1), 146-173 (2022).
  2. Sigismund, S., et al. Endocytosis and signaling: Cell logistics shape the eukaryotic cell plan. Physiological Reviews. 92 (1), 273-366 (2012).
  3. Lyu, Z., Genereux, J. C. Methodologies for measuring protein trafficking across cellular membranes. ChemPlusChem. 86 (10), 1397-1415 (2021).
  4. Rodriguez-Furlan, C., Raikhel, N. V., Hicks, G. R. Merging roads: Chemical tools and cell biology to study unconventional protein secretion. Journal of Experimental Botany. 69 (1), 39-46 (2017).
  5. Foissner, I., Sommer, A., Hoeftberger, M., Hoepflinger, M. C., Absolonova, M. Is wortmannin-induced reorganization of the trans-Golgi network the key to explain charasome formation. Frontiers in Plant Science. 7, 756 (2016).
  6. Qi, X., Torii, K. U. Hormonal and environmental signals guiding stomatal development. BMC Biology. 16 (1), 21 (2018).
  7. Han, S. K., Kwak, J. M., Qi, X. Stomatal lineage control by developmental program and environmental cues. Frontiers in Plant Science. 12, 751852 (2021).
  8. Bharath, P., Gahir, S., Raghavendra, A. S. Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Frontiers in Plant Science. 12, 615114 (2021).
  9. Becklin, K. M., Ward, J. K., Way, D. A. . Photosynthesis, Respiration, and Climate Change., 1st edition. , (2021).
  10. Yang, M., Sack, F. D. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell. 7 (12), 2227-2239 (1995).
  11. Hara, K., Kajita, R., Torii, K. U., Bergmann, D. C., Kakimoto, T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes & Development. 21 (14), 1720-1725 (2007).
  12. Hara, K., et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant & Cell Physiology. 50 (6), 1019-1031 (2009).
  13. Hunt, L., Gray, J. E. The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Current Biology. 19 (10), 864-869 (2009).
  14. Sugano, S. S., et al. Stomagen positively regulates stomatal density in Arabidopsis. Nature. 463 (7278), 241-244 (2010).
  15. Kondo, T., et al. Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant & Cell Physiology. 51 (1), 1-8 (2010).
  16. Hunt, L., Bailey, K. J., Gray, J. E. The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytologist. 186 (3), 609-614 (2010).
  17. Shpak, E. D., McAbee, J. M., Pillitteri, L. J., Torii, K. U. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science. 309 (5732), 290-293 (2005).
  18. Lin, G., et al. A receptor-like protein acts as a specificity switch for the regulation of stomatal development. Genes & Development. 31 (9), 927-938 (2017).
  19. Lee, J. S., et al. Direct interaction of ligand-receptor pairs specifying stomatal patterning. Genes & Development. 26 (2), 126-136 (2012).
  20. Qi, X., et al. The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate. Elife. 9, e58097 (2020).
  21. MacAlister, C. A., Ohashi-Ito, K., Bergmann, D. C. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature. 445 (7127), 537-540 (2007).
  22. Pillitteri, L. J., Sloan, D. B., Bogenschutz, N. L., Torii, K. U. Termination of asymmetric cell division and differentiation of stomata. Nature. 445 (7127), 501-505 (2007).
  23. Ohashi-Ito, K., Bergmann, D. C. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell. 18 (10), 2493-2505 (2006).
  24. Kanaoka, M. M., et al. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell. 20 (7), 1775-1785 (2008).
  25. Bergmann, D. C., Lukowitz, W., Somerville, C. R. Stomatal development and pattern controlled by a MAPKK kinase. Science. 304 (5676), 1494-1497 (2004).
  26. Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C., Zhang, S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell. 19 (1), 63-73 (2007).
  27. Ho, C. M., Paciorek, T., Abrash, E., Bergmann, D. C. Modulators of stomatal lineage signal transduction alter membrane contact sites and reveal specialization among ERECTA kinases. Developmental Cell. 38 (4), 345-357 (2016).
  28. Le, J., et al. Auxin transport and activity regulate stomatal patterning and development. Nature Communications. 5, 3090 (2014).
  29. Geldner, N., et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell. 112 (2), 219-230 (2003).
  30. Qi, X., et al. Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling. Elife. 6, 24102 (2017).
  31. Heilemann, M., et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie. 47 (33), 6172-6176 (2008).
  32. Leighton, R. E., Alperstein, A. M., Frontiera, R. R. Label-free super-resolution imaging techniques. Annual Review of Analytical Chemistry. 15 (1), 37-55 (2022).
  33. Oreopoulos, J., Berman, R., Browne, M. Spinning-disk confocal microscopy: Present technology and future trends. Methods in Cell Biology. 123, 153-175 (2014).
  34. Gao, R., et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science. 363 (6424), (2019).
  35. Nwaneshiudu, A., et al. Introduction to confocal microscopy. Journal of Investigative Dermatology. 132 (12), (2012).
  36. Sanderson, J. Multi-photon microscopy. Current Protocols. 3 (1), 634 (2023).

Play Video

Cite This Article
He, Q., Zhang, H., Qi, X. Image-Based Methods to Study Membrane Trafficking Events in Stomatal Lineage Cells. J. Vis. Exp. (195), e65257, doi:10.3791/65257 (2023).

View Video