Summary

Bioanalyse de diffusion Raman sans marquage à surface améliorée basée sur des nanosondes à Au@Carbon points

Published: June 09, 2023
doi:

Summary

Dans cette étude, nous avons développé une nanosonde d’empreintes digitales basée sur la diffusion Raman améliorée en surface (SERS) à faible coût avec une biocompatibilité favorable pour montrer la bioimagerie de cellules vivantes sans marquage et détecter deux souches bactériennes, montrant en détail comment obtenir des spectres SERS de cellules vivantes dans une méthode non destructive.

Abstract

La technologie de diffusion Raman améliorée en surface (SERS) attire de plus en plus l’attention dans le domaine biomédical en raison de sa capacité à fournir des informations moléculaires sur les empreintes digitales d’échantillons biologiques, ainsi que de son potentiel dans l’analyse de cellules uniques. Ce travail vise à établir une stratégie simple de bioanalyse SERS sans marquage basée sur Au@carbon nanosondes à points (Au@CDs). Ici, les CD dérivés de polyphénols sont utilisés comme réducteur pour synthétiser rapidement des nanostructures de noyau et de coquille Au@CD, ce qui permet de puissantes performances SERS même lorsque la concentration de bleu de méthylène (MB) est aussi faible que 10-9 M, en raison du mécanisme coopératif d’amélioration Raman. Pour la bioanalyse, Au@CDs peut servir de nanocapteur SERS unique pour identifier les composants cellulaires des échantillons biologiques (par exemple, les cellules cancéreuses et les bactéries). Les empreintes moléculaires de différentes espèces peuvent être distinguées après combinaison avec l’analyse en composantes principales. En outre, Au@CDs permettent également l’imagerie SERS sans marquage pour analyser les profils de composition intracellulaire. Cette stratégie offre une bioanalyse SERS réalisable et sans marque, ouvrant de nouvelles perspectives pour le nanodiagnostic.

Introduction

L’analyse unicellulaire est essentielle pour l’étude de la révélation de l’hétérogénéité cellulaire et l’évaluation de l’état global de la cellule. La réponse instantanée de la cellule au microenvironnement justifie également une analyse unicellulaire1. Cependant, il y a certaines limites aux techniques actuelles. La détection de fluorescence peut être appliquée à l’analyse d’une seule cellule, mais elle est limitée par une faible sensibilité. D’autres défis découlent du fond de fluorescence complexe des cellules et du photoblanchiment en fluorescence sous irradiation à long terme2. La diffusion Raman améliorée en surface (SERS) peut être qualifiée en termes d’analyse unicellulaire en raison de ses avantages, notamment (1) reflétant les informations moléculaires intrinsèques de l’empreinte digitale et la situation instantanée, (2) sensibilité de surface ultra-élevée, (3) détection multiplex pratique, (4) photostabilité élevée, (5) détection peut être quantifiée pour une analyse comparative, (6) éviter l’autofluorescence cellulaire avec l’excitation de longueur d’onde NIR, (7) la détection peut être effectuée dans un aqueux cellulaire environnement, et (8) la détection peut être dirigée vers une région spécifique de la cellule 3,4,5.

Il existe deux mécanismes largement reconnus pour comprendre le SERS comme un phénomène fondamental : l’amélioration électromagnétique (EM) comme raison dominante et l’amélioration chimique (CM). EM se réfère, dans une fréquence donnée du champ excitant, à l’oscillation d’électrons collectifs entraînés par des ondes électromagnétiques lorsque la fréquence de la lumière incidente correspond à la fréquence des électrons libres oscillant dans le métal, donnant lieu à la résonance plasmonique de surface (SPR). Lorsque la SPR localisée (LSPR) se produit par le laser incident qui frappe les nanoparticules métalliques (NP), elle conduit à l’absorption ou à la diffusion par résonance de la lumière incidente. Par conséquent, l’intensité du champ électromagnétique de surface des NP métalliques peut être augmentée de deux à cinq ordres4. Cependant, la clé de l’énorme amélioration du SERS n’est pas un seul NP métallique, mais l’écart entre deux NP, ce qui crée des points chauds. La CM est générée de deux côtés, y compris (1) les interactions entre les molécules cibles et les NP métalliques et (2) les molécules cibles capables de transférer des électrons vers/depuis les NP métalliques 4,5. Des détails plus exhaustifs peuvent être trouvés dans ces articles 4,5. Plusieurs méthodes prometteuses de biodétection et d’imagerie SERS dans les cellules vivantes ont été présentées dans la littérature antérieure, par exemple, la détection des cellules apoptotiques6, des protéines dans les organites7, des miARN intracellulaires8, des membranes lipidiques cellulaires9,des cytokines10 et des métabolites11 dans les cellules vivantes, ainsi que l’identification et la surveillance des cellules par imagerie confocale SERS2, 11,12,13. Fait intéressant, le SERS sans marquage présente l’avantage unique du SERS, qui peut décrire les spectres moléculaires internes5.

Un problème majeur pour le SERS sans étiquette est un substrat rationnel et fiable. Les substrats SERS typiques sont des NP de métaux nobles en raison de leur excellente capacité à diffuser beaucoup de lumière14. De nos jours, de plus en plus d’attention est accordée aux nanocomposites en raison de leurs propriétés physiques et chimiques remarquables et de leur biocompatibilité. Plus important encore, les nanocomposites peuvent présenter une meilleure activité SERS en raison de l’intense EM induite par les points chauds sur les nanohybrides et de l’amélioration chimique supplémentaire provenant d’autres matériaux non métalliques15. Par exemple, Fei et coll. ont utilisé des pointsquantiques MoS 2 (QD) comme réducteurs pour synthétiser des nanocomposites AuNP@MoS 2 QD pour l’imagerie SERS dans le proche infrarouge (NIR) sans marquage de cellules cancéreuses du sein 4T1 de souris (cellules 4T1)16. En outre, Li et al. ont fabriqué un substrat SERS 2D composé de NP Au et de nanofeuilles de ditellurure de hafnium 2D pour des mesures SERS sans marquage de bactéries pathogènes d’origine alimentaire17. Récemment, les points de carbone (CD), bons donneurs d’électrons, ont été utilisés comme réducteurs sans autres réducteurs ni irradiation pour synthétiser Au@carbon nanosondes à points (Au@CDs)18, qui ont été signalées comme des matériaux efficaces pour améliorer l’activité SERS basée sur l’effet de transfert de charge (CT) entre les noyaux Au et les coquilles CD19,20. De plus, les CD sont reconnus comme l’agent de coiffage et un stabilisateur pour empêcher les NP Au d’agréger21. En outre, il ouvre plus de possibilités de réactions avec les analytes, car il peut fournir un grand nombre de sites de liaison et actifs20. Tirant parti de ce qui précède, Jin et al. ont développé une méthode rapide et contrôlable pour fabriquer des NP Ag@CD dotés de propriétés SERS uniques et d’excellentes activités catalytiques pour surveiller des réactions catalytiques hétérogènes en temps réel18.

Ici, une méthode facile et peu coûteuse pour fabriquer des substrats de base Au@CD de SERS afin d’identifier les composants cellulaires et la bioimagerie de cellules vivantes SERS sans marque, ainsi que de détecter et de différencier Escherichia coli (E. coli) et Staphylococcus aureus (S. aureus) a été démontrée, ce qui est prometteur pour le diagnostic précoce de la maladie et une meilleure compréhension des processus cellulaires.

Protocol

1. Fabrication de Au@CDs REMARQUE : La figure 1 illustre une procédure de fabrication pour Au@CDs. Préparer la solution CD en utilisant de l’acide citrique (CA) et de l’acide gallique (AG) par un traitement hydrothermal typique18. Ajouter 100 μL de 3,0 mg mL-1 de la solution CD préparée dans 200 μL d’acide chloroaurique 10 mM (HAuCl4) (voir le tableau des matière…

Representative Results

La fabrication de la Au@CDs est illustrée à la figure 1. Les CD ont été préparés à partir d’AC et de GA par un procédé hydrothermal typique18. Au@CDs ont été rapidement synthétisés en réduisant HAuCl4 par des CD en milieu aqueux à température ambiante. La taille et la morphologie des CD et des Au@CDs peuvent être observées par TEM et TEM23 à haute résolution (HR). Les CD préparés son…

Discussion

En résumé, Au@CDs avec une coque CD ultramince de 2,1 nm ont été fabriquées avec succès. Les nanocomposites présentent une sensibilité SERS supérieure à celle des NP Au purs. En outre, Au@CDs possèdent d’excellentes performances en termes de reproductibilité et de stabilité à long terme. D’autres recherches comprennent la prise de Au@CDs comme substrats pour effectuer l’imagerie SERS des cellules A54931 et pour détecter deux souches bactériennes32. Il …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Ce travail a été soutenu par la Fondation nationale des sciences naturelles de Chine (32071399 et 62175071), le Programme pour la science et la technologie de Guangzhou (2019050001), la Fondation de recherche fondamentale et appliquée du Guangdong (2021A1515011988) et la Fondation ouverte du Laboratoire clé des sciences et technologies optoélectroniques pour la médecine (Université normale du Fujian), Ministère de l’éducation, Chine (JYG2009).

Materials

10x PBS buffer (Cell culture) Langeco Technology BL316A
6 well cell culture plate LABSELECT 11110
Cell Counting Kit-8 (CCK-8) GLPBIO GK10001
Citric acid Shanghai Aladdin Biochemical Technology C108869
CO2 incubator Thermo Fisher Technologies 3111
Constant temperature magnetic agitator Sartorius Scientific Instruments SQP
Cryogenic high speed centrifuge Shanghai Boxun SW-CJ-2FD
DMEM high glucose cell culture medium Procell PM150210
Electronic balance Sartorius Scientific Instruments SQP
Enzyme marker Thermo Fisher Technologies 3111
Fetal bovine serum Zhejiang Tianhang Biological Technology 11011-8611
Figure 1 Figdraw.
Fourier infrared spectrometer Thermo, America Nicolet 380
Freeze dryer Tecan Infinite F50
Gallic acid Shanghai Aladdin Biochemical Technology G104228
Handheld Raman spectrometer OCEANHOOD, Shanghai, China Uspectral-PLUS
HAuCl4 Guangzhou Pharmaceutical Company (Guangzhou)
High resolution transmission electron microscope Thermo Fisher Technologies FEI Tecnai G2 Spirit T12
High temperature autoclave Shanghai Boxun YXQ-LS-50S Equation 2
Inverted microscope Nanjing Jiangnan Yongxin Optical XD-202
LB Broth BR Huankai picoorganism 028320
Medical ultra-low temperature refrigerator Thermo Fisher Technologies ULTS1368
Methylene blue Sigma-Aldrich
Pancreatin Cell Digestive Solution beyotime C0207
Penicillin streptomycin double resistance Shanghai Boxun YXQ-LS-50S Equation 2
Pure water meter Millipore, USA Milli-Q System
Raman spectrometer Renishaw
Sapphire chip beyotime
Thermostatic water bath Changzhou Noki
Ultra-clean table Shanghai Boxun SW-CJ-2FD
Uv-visible light absorption spectrometer MADAPA, China UV-6100S
Wire 3.4 Renishaw

References

  1. Zenobi, R. Single-cell metabolomics: analytical and biological perspectives. Science. 342 (6163), 1243259 (2013).
  2. Dong, C., et al. Simultaneous visualization of dual intercellular signal transductions via SERS imaging of membrane proteins dimerization on single cells. ACS Nano. 16 (9), 14055-14065 (2022).
  3. Lane, L. A., Qian, X., Nie, S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chemical Reviews. 115 (19), 10489-10529 (2015).
  4. Langer, J., et al. Present and future of surface-enhanced Raman scattering. ACS Nano. 14 (1), 28-117 (2020).
  5. Zong, C., et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews. 118 (10), 4946-4980 (2018).
  6. Jiang, X., et al. Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level. Analytical Chemistry. 85 (5), 2809-2816 (2013).
  7. Qi, G., Diao, X., Hou, S., Kong, J., Jin, Y. Label-free SERS detection of protein damage in organelles under electrostimulation with 2D AuNPs-based nanomembranes as substrates. Analytical Chemistry. 94 (43), 14931-14937 (2022).
  8. Wang, J., et al. Trimer structures formed by target-triggered AuNPs self-assembly inducing electromagnetic hot spots for SERS-fluorescence dual-signal detection of intracellular miRNAs. Biosensors and Bioelectronics. 224, 115051 (2023).
  9. Živanović, V., Milewska, A., Leosson, K., Kneipp, J. Molecular structure and interactions of lipids in the outer membrane of living cells based on surface-enhanced Raman scattering and liposome models. Analytical Chemistry. 93 (29), 10106-10113 (2021).
  10. Cong, L., et al. Microfluidic droplet-SERS platform for single-cell cytokine analysis via a cell surface bioconjugation strategy. Analytical Chemistry. 94 (29), 10375-10383 (2022).
  11. Tan, Z., Zhu, C., Han, L., Liao, X., Wang, C. SERS and dark-field scattering dual-mode detection of intracellular hydrogen peroxide using biocompatible Au@ COF nanosensor. Sensors and Actuators B: Chemical. 373, 132770 (2022).
  12. Pan, X. T., et al. Super-long SERS active single silver nanowires for molecular imaging in 2D and 3D cell culture models. Biosensors. 12 (10), 875 (2022).
  13. Liu, Z., et al. A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale. 10 (39), 18795-18804 (2018).
  14. Bruzas, I., Lum, W., Gorunmez, Z., Sagle, L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst. 143 (17), 3990-4008 (2018).
  15. Li, D., et al. SERS analysis of carcinoma-associated fibroblasts in a tumor microenvironment based on targeted 2D nanosheets. Nanoscale. 12 (3), 2133-2141 (2020).
  16. Fei, X., et al. Synthesis of Au NP@MoS2quantum dots core@shell nanocomposites for SERS bio-analysis and label-free bio-imaging. Materials. 10 (6), 650 (2017).
  17. Li, Y., et al. Rapid label-free SERS detection of foodborne pathogenic bacteria based on hafnium ditelluride-Au nanocomposites. Journal of Innovative Optical Health Sciences. 13 (5), 2041004 (2020).
  18. Jin, J., et al. Precisely controllable core-shell Ag@ carbon dots nanoparticles: application to in situ super-sensitive monitoring of catalytic reactions. ACS Applied Materials & Interfaces. 8 (41), 27956-27965 (2016).
  19. Luo, P., Li, C., Shi, G. Synthesis of gold@ carbon dots composite nanoparticles for surface enhanced Raman scattering. Physical Chemistry Chemical Physics. 14 (20), 7360-7366 (2012).
  20. Li, L., et al. Accurate SERS monitoring of the plasmon mediated UV/visible/NIR photocatalytic and photothermal catalytic process involving Ag@carbon dots. Nanoscale. 13 (2), 1006-1015 (2021).
  21. Wang, X., et al. Reduced state carbon dots as both reductant and stabilizer for the synthesis of gold nanoparticles. Carbon. 64, 499-506 (2013).
  22. Zhu, M., et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Accounts of Chemical Research. 46 (3), 622-631 (2013).
  23. Li, L., et al. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@ carbon dots for tumor catalytic therapy. Light: Science & Applications. 11 (1), 286 (2022).
  24. Fiori, F., et al. Highly photostable carbon dots from citric acid for bioimaging. Materials. 15 (7), 2395 (2022).
  25. Chen, X., et al. Preparation of carbon dots-based nanoparticles and their research of bioimaging and targeted antitumor therapy. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. 110 (1), 220-228 (2022).
  26. Chen, M., et al. Red, green, and blue light-emitting carbon dots prepared from gallic acid for white light-emitting diode applications. Nanoscale Advances. 4 (1), 14-18 (2022).
  27. Byram, C., Moram, S. S. B., Shaik, A. K., Soma, V. R. Versatile gold based SERS substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate. Chemical Physics Letters. 685, 103-107 (2017).
  28. Efrima, S., et al. Understanding SERS of bacteria. Journal of Raman Spectroscopy. 40 (3), 277-288 (2009).
  29. Movasaghi, Z., Rehman, S., Rehman, I. U. Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews. 42 (5), 493-541 (2007).
  30. Mushtaq, A., et al. Surface-enhanced Raman spectroscopy (SERS) for monitoring colistin-resistant and susceptible E. coli strains. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 278, 121315 (2022).
  31. Mosier-Boss, P. A., Sorensen, K. C., George, R. D., Obraztsova, A. SERS substrates fabricated using ceramic filters for the detection of bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 153, 591-598 (2016).
  32. Zhang, P., et al. Dynamic insights into increasing antibiotic resistance in Staphylococcus aureus by label-free SERS using a portable Raman spectrometer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 273, 121070 (2022).
  33. Li, J. F., Zhang, Y. J., Ding, S. Y., Panneerselvam, R., Tian, Z. Q. Core-shell nanoparticle-enhanced Raman spectroscopy. Chemical Reviews. 117 (7), 5002-5069 (2017).
  34. Bodelon, G., Montes-Garcia, V., Perez-Juste, J., Pastoriza-Santos, I. Surface-enhanced Raman scattering spectroscopy for label-free analysis of P. aeruginosa quorum sensing. Frontiers in Cellular and Infection Microbiology. 8, 143 (2018).
  35. Weiss, R., et al. Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. Analyst. 144 (3), 943-953 (2019).
  36. Oliveira, K., et al. Multiplex SERS phenotyping of single cancer cells in microdroplets. Advanced Optical Materials. 11 (1), 2201500 (2023).
  37. Ho, C. S., et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nature Communications. 10 (1), 4927 (2019).
  38. Spedalieri, C., Kneipp, J. Surface enhanced Raman scattering for probing cellular biochemistry. Nanoscale. 14 (14), 5314-5328 (2022).
  39. Weng, S. Y., et al. Highly sensitive and reliable detection of microRNA for clinically disease surveillance using SERS biosensor integrated with catalytic hairpin assembly amplification technology. Biosensors & Bioelectronics. 208, 114236 (2022).
  40. Wang, J. W., et al. Target-triggered nanomaterial self-assembly induced electromagnetic hot-Spot Generation for SERS-fluorescence dual-mode in situ monitoring MiRNA-guided phototherapy. Analytical Chemistry. 93 (41), 13755-13764 (2021).

Play Video

Cite This Article
Zheng, Y., Xiao, X., Li, Z., Shao, Y., Chen, J., Guo, Z., Zhong, H., Liu, Z. Label-Free Surface-Enhanced Raman Scattering Bioanalysis Based on Au@Carbon Dot Nanoprobes. J. Vis. Exp. (196), e65524, doi:10.3791/65524 (2023).

View Video