Summary

Live-celle billeddannelse af Drosophila melanogaster tredje stjerne larvehjerner

Published: June 23, 2023
doi:

Summary

Her diskuterer vi en arbejdsgang til at forberede, dissekere, montere og afbilde levende explant hjerner fra Drosophila melanogaster tredje instar larver for at observere den cellulære og subcellulære dynamik under fysiologiske forhold.

Abstract

Drosophila neurale stamceller (neuroblaster, NB’er i det følgende) gennemgår asymmetriske opdelinger, regenererer den selvfornyende neuroblast, samtidig med at der dannes en differentierende ganglionmodercelle (GMC), som vil gennemgå en yderligere opdeling for at give anledning til to neuroner eller glia. Undersøgelser i NB’er har afdækket de molekylære mekanismer, der ligger til grund for cellepolaritet, spindelorientering, neurale stamcellers selvfornyelse og differentiering. Disse asymmetriske celledelinger kan let observeres via levende cellebilleddannelse, hvilket gør larve-NB’er ideelle til at undersøge den rumlige temporale dynamik i asymmetrisk celledeling i levende væv. Når NB’er i eksplantathjerner dissekeres korrekt og afbildes i næringsstofsuppleret medium, deler de sig robust i 12-20 timer. Tidligere beskrevne metoder er teknisk vanskelige og kan være udfordrende for dem, der er nye på området. Her beskrives en protokol til forberedelse, dissektion, montering og billeddannelse af levende tredje-instar larvehjerneeksplanter ved hjælp af fedtkropstilskud. Potentielle problemer diskuteres også, og der gives eksempler på, hvordan denne teknik kan bruges.

Introduction

Asymmetrisk celledeling (ACD) er den proces, hvorved subcellulære komponenter såsom RNA, proteiner og organeller fordeles ujævnt mellem datterceller 1,2. Denne proces ses almindeligvis i stamceller, som gennemgår ACD for at give anledning til datterceller med forskellige udviklingsmæssige skæbner. Drosophila NB’er deler sig asymmetrisk for at producere en NB, som bevarer sin stamme, og en ganglionmodercelle (GMC). GMC gennemgår yderligere opdelinger for at producere differentierende neuroner eller glia3. Asymmetrisk delende NB’er er rigelige i de udviklende hjerner hos tredjestjernelarver, som let observeres via mikroskopi. På det tredje stjernelarvestadie er der omkring 100 NB’er til stede i hver central hjernelap 3,4,5,6.

Asymmetrisk celledeling er en meget dynamisk proces. Live-celle imaging protokoller er blevet brugt til at måle og kvantificere dynamikken i cellepolaritet 7,8,9,10, spindel orientering 11,12,13, dynamikken i actomyosin cortex 14,15,16,17,18, mikrotubuli og centrosombiologi 19,20,21,22,23,24,25,26,27 og membran 10,28 og kromatin dynamik 29. Kvalitative og kvantitative beskrivelser af ACD er afhængige af robuste metoder og protokoller til billedopdeling af NB’er i intakte levende hjerner. Følgende protokol skitserer metoder til at forberede, dissekere og afbilde tredje stjernelarvehjerner til levende cellebilleddannelse in vivo ved hjælp af to forskellige monteringsmetoder. Disse metoder er bedst egnet til forskere, der er interesseret i den rumlige temporale dynamik i stamcelledelinger samt opdelinger i andre hjerneceller, da de giver mulighed for kort- og langsigtede observationer af cellulære begivenheder. Derudover er disse teknikker let tilgængelige for nybegyndere på området. Vi demonstrerer effektiviteten og tilpasningsevnen af denne tilgang med larvehjerner, der udtrykker fluorescerende mærkede mikrotubuli og kortikale fusionsproteiner. Vi diskuterer desuden analysemetoder og overvejelser til anvendelse i andre undersøgelser.

Protocol

BEMÆRK: Figur 1 viser de materialer, der kræves for at udføre denne undersøgelse. 1. Overvejelser og forberedelser til forsøget Forhindre larverne i at overfylde.BEMÆRK: Kvaliteten af explant larvehjerner er direkte relateret til larvernes sundhed og kvalitet før dissektion. Larver, der er underernærede fra overbelægning, vil generelt give hjerner af lavere kvalitet30.Sørg for, at der ikke er…

Representative Results

Dissektion og billeddannelse af central hjernelap NB’er, der udtrykker stifter::EGFP og kirsebær::JupiterFor at fremvise denne protokol, larver, der udtrykker UAS-drevet kirsebær::Jupiter13 og endogent tagget Pins::EGFP16 (w; worGal4, UAS-kirsebær::jupiter/CyO; Pins:: EGFP / TM6B, Tb) blev afbildet i 4 timer ved hjælp af den beskrevne protokol ved hjælp af multi-well imaging dias (figur 5C, D). Yderlig…

Discussion

Denne protokol skitserer en tilgang til billeddannelse af levende explant hjerner fra Drosophila melanogaster larver. Protokollen beskrevet her gør det muligt at observere explant-hjerner i 12-20 timer under de rigtige eksperimentelle betingelser. Der skal tages særligt hensyn til forberedelsen af prøver og udformningen af de ønskede forsøg. Som nævnt ovenfor er en af de mest kritiske faktorer, der bestemmer kvaliteten af det dissekerede væv, larvernes sundhed. For at opnå den højest mulige kvalitet ska…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denne forskning støttes af R35GM148160 (CC) og et National Institutes of Health (NIH) Training Grant T32 GM007270 (RCS)

Materials

0.22 µm polyethersulfone (PES) Membrane Genesee 25-231 Vacuum-driven filters
Agar Genesee 20-248 granulated agar
Analytical Computer Dell NA Intel Xeon Gold 5222 CPU with two 3.80 GHz processors running Windows 10 on a 64-bit operating system
Bovine Growth Serum HyClone SH30541.02
Chambered Imaging Slides Ibidi 80826
Confocal Microscope Nikon NA
Custom-machined metal slide NA NA See Cabernard and Doe 2013 (Ref. 34) for specifications
Dissection Dishes Fisher Scientific 5024343 3-well porcelain micro spot plate
Dissection Forceps World Precision Instruments Dumont #5
Dissection Microscope Leica NA
Dissection Scissors Fine Science Tools (FST) 15003-08
Embryo collection cage Genesee 59-100
Flypad with access to CO2 to anesthetize adult flies Genesee 59-172
Gas-permeable membrane YSI 98095 Gas-permeable membrane
Glass Cover Slides Electron Microscopy Sciences 72204-03 # 1.5; 22 mm x 40 mm glass coverslips
Imaris Oxford Instruments NA Alternatives: Fiji, Volocity, Aivia
Imaris File Converter Oxford Instruments NA
Instant Yeast Saf-Instant NA
Molasses Genesee 62-117
Petri dish Greiner Bio-One 628161 60 mm x 15 mm Petri dish
Petroleum Jelly Vaseline NA
Schneider's Insect Medium with L-glutamine and sodium bicarbonate liquid Millipore Sigma S0146
SlideBook acquisition software 3i NA
Vacuum-Driven Filtration Unit with a 0.22 µµm PES membrane filter Genesee Scientific, GenClone 25-231

References

  1. Delgado, M. K., Cabernard, C. Mechanical regulation of cell size, fate, and behavior during asymmetric cell division. Current Opinion in Cell Biology. 67, 9-16 (2020).
  2. Sunchu, B., Cabernard, C. Principles and mechanisms of asymmetric cell division. Development. 147 (13), (2020).
  3. Homem, C. C. F., Knoblich, J. A. Drosophila neuroblasts: A model for stem cell biology. Development. 139 (23), 4297-4310 (2012).
  4. Gallaud, E., Pham, T., Cabernard, C. Drosophila melanogaster neuroblasts: A model for asymmetric stem cell divisions. Results and Problems in Cell Differentiation. 61 (1489), 183-210 (2017).
  5. Loyer, N., Januschke, J. Where does asymmetry come from? Illustrating principles of polarity and asymmetry establishment in Drosophila neuroblasts. Current Opinion in Cell Biology. 62, 70-77 (2020).
  6. Pollington, H. Q., Seroka, A. Q., Doe, C. Q. From temporal patterning to neuronal connectivity in Drosophila type I neuroblast lineages. Seminars in Cell & Developmental Biology. 142, 4-12 (2023).
  7. Oon, C. H., Prehoda, K. Asymmetric recruitment and actin dependent cortical flows drive the neuroblast polarity cycle. eLife. 8, e45815 (2019).
  8. Ramat, A., Hannaford, M., Januschke, J. Maintenance of miranda localization in Drosophila neuroblasts involves interaction with the cognate mRNA. Current Biology. 27 (14), 2101-2111 (2017).
  9. Oon, C. H., Prehoda, K. E. Phases of cortical actomyosin dynamics coupled to the neuroblast polarity cycle. eLife. 10, e66574 (2021).
  10. LaFoya, B., Prehoda, K. E. Actin-dependent membrane polarization reveals the mechanical nature of the neuroblast polarity cycle. Cell Reports. 35 (7), 109146 (2021).
  11. Siller, K. H., Doe, C. Q. Lis1/dynactin regulates metaphase spindle orientation in Drosophila neuroblasts. 발생학. 319 (1), 1-9 (2008).
  12. Siller, K. H., Cabernard, C., Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biology. 8 (6), 594-600 (2006).
  13. Cabernard, C., Doe, C. Q. Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Developmental Cell. 17 (1), 134-141 (2009).
  14. Cabernard, C., Prehoda, K. E., Doe, C. Q. A spindle-independent cleavage furrow positioning pathway. Nature. 467 (7311), 91-94 (2010).
  15. Connell, M., Cabernard, C., Ricketson, D., Doe, C. Q., Prehoda, K. E. Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts. Molecular Biology of the Cell. 22 (22), 4220-4226 (2011).
  16. Tsankova, A., Pham, T. T., Garcia, D. S., Otte, F., Cabernard, C. Cell polarity regulates biased myosin activity and dynamics during asymmetric cell division via Drosophila rho kinase and protein kinase N. Developmental Cell. 42 (2), 143-155 (2017).
  17. Montembault, E., et al. Myosin efflux promotes cell elongation to coordinate chromosome segregation with cell cleavage. Nature Communications. 8 (1), 326 (2017).
  18. Roubinet, C., et al. Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells. Nature Communications. 8 (1), 1383 (2017).
  19. Januschke, J., et al. Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts. Nature Cell Biology. 15 (3), 241-248 (2013).
  20. Januschke, J., Llamazares, S., Reina, J., Gonzalez, C. Drosophila neuroblasts retain the daughter centrosome. Nature Communications. 2 (1), 243 (2011).
  21. Rebollo, E., et al. Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Developmental Cell. 12 (3), 467-474 (2007).
  22. Januschke, J., Gonzalez, C. The interphase microtubule aster is a determinant of asymmetric division orientation in Drosophila neuroblasts. The Journal of Cell Biology. 188 (5), 693-706 (2010).
  23. Rusan, N. M., Peifer, M. A role for a novel centrosome cycle in asymmetric cell division. The Journal of Cell Biology. 177 (1), 13-20 (2007).
  24. Lerit, D. A., et al. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function. Journal of Cell Biology. 210 (1), 79-97 (2015).
  25. Gallaud, E., et al. Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. PLoS Biology. 18 (8), e3000762 (2020).
  26. Ramdas Nair, A., et al. The microcephaly-associated protein Wdr62/CG7337 is required to maintain centrosome asymmetry in Drosophila neuroblasts. Cell Reports. 14 (5), 1100-1113 (2016).
  27. Singh, P., Nair, A. R., Cabernard, C. The centriolar protein Bld10/Cep135 is required to establish centrosome asymmetry in Drosophila neuroblasts. Current Biology. 24 (13), 1548-1555 (2014).
  28. LaFoya, B., Prehoda, K. E. Consumption of a polarized membrane reservoir drives asymmetric membrane expansion during the unequal divisions of neural stem cells. Developmental Cell. 1534 (23), 00159 (2023).
  29. Sunchu, B., et al. Asymmetric chromatin retention and nuclear envelopes separate chromosomes in fused cells in vivo. Communications Biology. 5 (1), 953 (2022).
  30. Oliveira, A. C., Rebelo, A. R., Homem, C. C. F. Integrating animal development: How hormones and metabolism regulate developmental transitions and brain formation. 발생학. 475, 256-264 (2021).
  31. Britton, J. S., Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development. 125 (11), 2149-2158 (1998).
  32. Lee, C. -. Y., et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes & Development. 20 (24), 3464-3474 (2006).
  33. Homem, C. C. F., Reichardt, I., Berger, C., Lendl, T., Knoblich, J. A. Long-term live cell imaging and automated 4D analysis of Drosophila neuroblast lineages. PLoS ONE. 8 (11), e79588 (2013).
  34. Cabernard, C., Doe, C. Q. Live imaging of neuroblast lineages within intact larval brains in Drosophila. Cold Spring Harbor Protocols. 2013 (10), 970-977 (2013).
  35. Karpova, N., Bobinnec, Y., Fouix, S., Huitorel, P., Debec, A. Jupiter, a new Drosophila protein associated with microtubules. Cell Motility and the Cytoskeleton. 63 (5), 301-312 (2006).
  36. Loyer, N., Januschke, J. The last-born daughter cell contributes to division orientation of Drosophila larval neuroblasts. Nature Communications. 9 (1), 3745 (2018).
  37. Bostock, M. P., et al. An immobilization technique for long-term time-lapse imaging of explanted Drosophila tissues. Frontiers in Cell and Developmental Biology. 8, 590094 (2020).

Play Video

Cite This Article
Segura, R. C., Cabernard, C. Live-Cell Imaging of Drosophila melanogaster Third Instar Larval Brains. J. Vis. Exp. (196), e65538, doi:10.3791/65538 (2023).

View Video