Summary

Affinitätsreinigung eines fibrinolytischen Enzyms aus Sipunculus nudus

Published: June 02, 2023
doi:

Summary

Hier stellen wir eine Affinitätsreinigungsmethode eines fibrinolytischen Enzyms aus Sipunculus nudus vor, die einfach, kostengünstig und effizient ist.

Abstract

Das fibrinolytische Enzym aus Sipunculus nudus (sFE) ist ein neuartiges Fibrinolytikum, das sowohl Plasminogen zu Plasmin aktivieren als auch Fibrin direkt abbauen kann, was große Vorteile gegenüber herkömmlichen Thrombolytika aufweist. Aufgrund des Mangels an strukturellen Informationen basieren jedoch alle Aufreinigungsprogramme für sFE auf mehrstufigen chromatographischen Aufreinigungen, die zu kompliziert und kostspielig sind. In dieser Arbeit wird erstmalig ein Affinitätsreinigungsprotokoll von sFE entwickelt, das auf einer Kristallstruktur von sFE basiert; Es umfasst die Vorbereitung der Rohprobe und der Lysin/Arginin-Agarose-Matrix-Affinitätschromatographie-Säule, die Affinitätsreinigung und die Charakterisierung der gereinigten sFE. Nach diesem Protokoll kann eine Charge sFE innerhalb von 1 Tag gereinigt werden. Darüber hinaus erhöht sich die Reinheit und Aktivität des gereinigten sFE auf 92 % bzw. 19.200 U/ml. Somit ist dies ein einfacher, kostengünstiger und effizienter Ansatz für die sFE-Reinigung. Die Entwicklung dieses Protokolls ist von großer Bedeutung für die weitere Verwendung von sFE und anderen ähnlichen Wirkstoffen.

Introduction

Thrombosen stellen eine große Bedrohung für die öffentliche Gesundheit dar, insbesondere nach der globalen Covid-19-Pandemie 1,2. Klinisch werden viele Plasminogenaktivatoren (PAs), wie z. B. Gewebetyp-Plasminogenaktivatoren (tPA) und Urokinase (UK), häufig als thrombolytische Arzneimittel eingesetzt. PAs können das Plasminogen des Patienten in aktives Plasmin aktivieren, um Fibrin abzubauen. Daher ist ihre thrombolytische Effizienz durch den Plasminogenstatus der Patienten stark eingeschränkt 3,4. Fibrinolytika wie Metalloproteinase-Plasmin und Serin-Plasmin sind eine weitere Art von klinischen thrombolytischen Arzneimitteln, zu denen auch fibrinolytische Enzyme (FE) wie Plasmin gehören, die Gerinnsel direkt auflösen können, aber durch verschiedene Plasmininhibitoren schnell inaktiviert werden5. In der Folge wurde über eine neuartige Art von Fibrinolytikum berichtet, das den Thrombus auflösen kann, indem es nicht nur das Plasminogen in Plasmin aktiviert, sondern auch das Fibrindirekt abbaut 6-das fibrinolytische Enzym aus dem alten Erdnusswurm Sipunculus nudus (sFE)6. Diese Bifunktion verleiht sFE weitere Vorteile gegenüber herkömmlichen Thrombolytika, insbesondere in Bezug auf den abnormen Plasminogenstatus. Im Vergleich zu anderen bifunktionellen Fibrinolytika 7,8,9 weist sFE mehrere Vorteile, einschließlich der Sicherheit, gegenüber Non-Food-Wirkstoffen für die Arzneimittelentwicklung, insbesondere für orale Arzneimittel, auf. Dies liegt daran, dass die biologische Sicherheit und Biokompatibilität von Sipunculus nudus gut belegt sind10.

Ähnlich wie bei den anderen natürlichen Fibrinolytika, die aus Mikroorganismen, Regenwürmern und Pilzen isoliert werden, ist die Reinigung von sFE aus S. nudus sehr kompliziert und umfasst mehrere Stufen wie Gewebehomogenisierung, Ammoniumsulfatausfällung, Entsalzung, Anionenaustauschchromatographie, hydrophobe Interaktionschromatographie und Molekularsiebung10,11,12. Ein solches Reinigungssystem hängt nicht nur von kompetenten Fähigkeiten und teuren Materialien ab, sondern benötigt auch mehrere Tage, um das gesamte Verfahren abzuschließen. Daher ist ein einfaches Reinigungsprogramm von sFE von großer Bedeutung für die weitere Entwicklung von sFE. Glücklicherweise konnten zwei Kristalle von sFE (PDB: 8HZP; PDB: 8HZO) erfolgreich erhalten wurden (siehe Ergänzungsdatei 1 und Ergänzungsdatei 2). Durch Strukturanalysen und molekulare Docking-Experimente fanden wir heraus, dass der katalytische Kern von sFE spezifisch an Targets binden kann, die Arginin- oder Lysinreste enthalten.

In dieser Arbeit wurde zum ersten Mal ein Affinitätsreinigungssystem vorgeschlagen, das auf der Kristallstruktur von sFE basiert. Durch die Befolgung dieses Protokolls konnte hochreines und hochaktives sFE aus den Rohextrakten in einer einzigen Affinitätsreinigungsstufe gereinigt werden. Das hier entwickelte Protokoll ist nicht nur für die großtechnische Herstellung von sFE wichtig, sondern kann auch für die Aufreinigung anderer Fibrinolytika eingesetzt werden.

Protocol

1. Vorbereitung ProbenbehandlungFrischen S. nudus (100 g) vorsichtig präparieren und den Darm und seine innere Flüssigkeit auffangen. Zur Homogenisierung (1.000 U/min, 60 s) werden 300 ml Tris-HCl-Puffer (0,02 M, pH 7,4) zugegeben. Das Homogenat 3x einfrieren und auftauen. Die Probe wird zentrifugiert (10.956 × g, 0,5 h, 4 °C) und der Überstand aufgefangen. Lagern Sie die Probe bis zur weiteren Verwendung bei 4 °C. </li…

Representative Results

Nach diesem Protokoll wurden Rohgewebelysate extrahiert, Arginin-Agarose-Matrix- und Lysin-Agarose-Matrix-Affinitätschromatographie-Säulen gebaut, gereinigte sFE erhalten und die Reinheit und fibrinolytische Aktivität der gereinigten sFE mit SDS-PAGE- bzw. Fibrinplatten gemessen. Nach der Zentrifugation war der gesammelte Überstand eine durchsichtige, hellbraune, viskose Flüssigkeit. Die Ausfällung begann, wenn dieser Überstand mit gesättigter Ammoniumsulfatlösung (neun Volumen) gemis…

Discussion

Da die exakte Gensequenz von sFE nicht verfügbar war, wurde die derzeit verwendete sFE aus frischem S. nudus14 extrahiert. Darüber hinaus waren die in der Literatur beschriebenen Reinigungsverfahren von sFE kompliziert und kostspielig, da sie auf einigen allgemeinen Merkmalen von sFE basierten, wie z. B. Molekulargewicht, isoelektrischer Punkt, Ionenstärke und Polarität15,16. Bisher wurde kein Affinitätsreinigungsprotokoll vo…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Diese Forschung wurde vom Wissenschafts- und Technologiebüro der Stadt Xiamen (3502Z20227197) und dem Wissenschafts- und Technologiebüro der Provinz Fujian (Nr. 2019J01070, Nr. 2021Y0027) finanziert.

Materials

30% Acrylamide-Bisacrylamide (29:1) Biosharp
2-Mercaptoethanol Solarbio
Agarose G-10 Biowest
Ammonium persulfate SINOPHARM
Ammonium sulfate SINOPHARM
Arginine-Sepharose 4B Solarbio Arginine-agarose matrix
Bromoxylenol Blue (BPB) Solarbio
Fast Silver Stain Kit Beyotime
Fibrinogen Merck
Glycine Solarbio
Hydrochloric acid SINOPHARM
Kinase RHAWN
Lysine-Sepharose 4B Solarbio Lysine-agarose matrix
N,N,N',N'-Tetramethylethylenediamine (TEMED) Sigma-Aldrich
Prestained Color Protein Marker (10-170 kD) Beyotime
Sodium chloride SINOPHARM
Sodium Dodecyl Sulfonate (SDS) Sigma-Aldrich
Sodium hydroxide SINOPHARM
Thrombin Meilunbio
Tris(Hydroxymethyl) Aminomethane Solarbio
Tris(Hydroxymethyl) Aminomethane Hydrochloride Solarbio
Equipment
AKT Aprotein Purification System pure GE
Automatic Vertical Pressure Steam Sterilizer MLS-3750 SANYO
Chemiluminescence Imaging System GE
Constant Flow Pump BT-100 QITE
Constant Temperature Incubator JINGHONG
Desktop Refrigerated Centrifuge 3-30KS SIGMA
DHG Series Heating and Drying Oven DGG-9140AD SENXIN
Electric Glass Homogenizer DY89-II SCIENTZ
Electronic Analytical Balance DENVER
Electro-Thermostatic Water Bath DK-S12 SENXIN
Horizontal Decolorization Shaker Kylin-Bell
Ice Machine AF 103 Scotsman
KQ-500E Ultrasonic Cleaner ShuMei
Magnetic Stirrer Zhi wei
Micro Refrigerated Centrifuge H1650-W Cence
Microwave Oven Galanz
Milli-Q Reference Millipore
Pipettor Thermo Fisher Scientific
Precision Desktop pH Meter Sartorious
Small-sized Vortex Oscillator Kylin-Bell
Vertical Electrophoresis System Bio-Rad
Consumable Material 
200 µL PCR Tube (200 µL) Axygene
Centrifuge Tube (1.5 mL) Biosharp
Centrifuge Tube (5 mL) Biosharp
Centrifuge Tube (50 mL) NEST
Centrifuge Tube (7 mL) Biosharp
Culture Dish (60 mm) NEST
Filter Membrane (0.22 µm) Millex GP
Parafilm Bemis
Pipette Tip (1 mL ) KIRGEN
Pipette Tip (10 µL) Axygene
Pipette Tip (200 µL) Axygene
Special Indicator Paper TZAKZY
Ultra Centrifugal Filter Unit (15 mL 3 KDa) Millipore
Ultra Centrifugal Filter Unit (4 mL 3 KDa) Millipore
Universal pH Indicator SSS Reagent

References

  1. Rosell, A., et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 41 (2), 878-882 (2021).
  2. Schultz, N. H., et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. The New England. Journal of Medicine. 384 (22), 2124-2130 (2021).
  3. von Kaulla, K. N. Urokinase-induced fibrinolysis of human standard clots. Nature. 184 (4695), 1320-1321 (1959).
  4. Van de Werf, F., et al. Coronary thrombolysis with tissue-type plasminogen activator in patients with evolving myocardial infarction. The New England Journal of Medicine. 310 (10), 609-613 (1984).
  5. Schaller, J., Gerber, S. S. The plasmin-antiplasmin system: structural and functional aspects. Cellular and Molecular Life Sciences. 68 (5), 785-801 (2011).
  6. Ge, Y. -. H., et al. A novel antithrombotic protease from marine worm Sipunculus nudus. International Journal of Molecular Sciences. 19 (10), 3023 (2018).
  7. Liu, X., et al. Purification and characterization of a novel fibrinolytic enzyme from culture supernatant of Pleurotus ostreatus. Journal of Microbiology and Biotechnology. 24 (2), 245-253 (2014).
  8. Choi, J. -. H., Sapkota, K., Kim, S., Kim, S. -. J. Starase: A bi-functional fibrinolytic protease from hepatic caeca of Asterina pectinifera displays antithrombotic potential. Biochimie. 105, 45-57 (2014).
  9. Liu, H., et al. A novel fibrinolytic protein From Pheretima vulgaris: purification, identification, antithrombotic evaluation, and mechanisms investigation. Frontiers in Molecular Biosciences. 8, 772419 (2022).
  10. Wu, Y., et al. Antioxidant, hypolipidemic and hepatic protective activities of polysaccharides from Phascolosoma esculenta. Marine Drugs. 18 (3), 158 (2020).
  11. . Preparation and application of natural fibrinolytic enzyme from peanut worm Available from: https://patents.google.com/patent/CN109295042A/en (2019)
  12. Li, W., Yuan, M., Wu, Y., Xu, R. Identification of genes expressed differentially in female and male gametes of Sipunculus nudus. Aquaculture Research. 51 (9), 3780-3789 (2020).
  13. Ossipow, V., Laemmlii, U. K., Schibler, U. A simple method to renature DNA-binding proteins separated by SDS-polyacrylamide gel electrophoresis. Nucleic Acids Research. 21 (25), 6040-6041 (1993).
  14. Hsu, T., Ning, Y., Gwo, J., Zeng, Z. DNA barcoding reveals cryptic diversity in the peanut worm Sipunculus nudus. Molecular Ecology Resources. 13 (4), 596-606 (2013).
  15. Abiko, Y., Iwamoto, M., Shimizu, M. Plasminogen-plasmin system. I. Purification and properties of human plasminogen. The Journal of Biochemistry. 64 (6), 743-750 (1968).
  16. Abiko, Y., Iwamoto, M., Shimizu, M. Plasminogen-plasmin system. II. Purification and properties of human plasmin. The Journal of Biochemistry. 64 (6), 751-757 (1968).
  17. Wiman, B. Affinity-chromatographic purification of human α2-antiplasmin. The Biochemical Journal. 191 (1), 229-232 (1980).
  18. Sandbjerg Hansen, M., Clemmensen, I. Partial purification and characterization of a new fast-acting plasmin inhibitor from human platelets. Evidence for non-identity with the known plasma proteinase inhibitors. The Biochemical Journal. 187 (1), 173-180 (1980).
  19. Pietrocola, G., Rindi, S., Nobile, G., Speziale, P. Purification of human plasma/cellular fibronectin and fibronectin fragments. Fibrosis. 1627, 309-324 (2017).
  20. Nabiabad, H. S., Yaghoobi, M. M., Javaran, M. J., Hosseinkhani, S. Expression analysis and purification of human recombinant tissue type plasminogen activator (rt-PA) from transgenic tobacco plants. Preparative Biochemistry and Biotechnology. 41 (2), 175-186 (2011).
  21. Shearin, T. V., Pizzo, S. V., Gonzalez-Gronow, M. Molecular abnormalities of human plasminogen isolated from synovial fluid of rheumatoid arthritis patients. Journal of Molecular Medicine. 75 (5), 378-385 (1997).
check_url/kr/65631?article_type=t

Play Video

Cite This Article
Tang, M., Lin, H., Hu, C., Yan, H. Affinity Purification of a Fibrinolytic Enzyme from Sipunculus nudus. J. Vis. Exp. (196), e65631, doi:10.3791/65631 (2023).

View Video