Summary

Sub-retinal levering af humane embryonale stamcelleafledte fotoreceptorforfædre i rd10-mus

Published: October 06, 2023
doi:

Summary

Vi beskriver en detaljeret protokol til fremstilling af postkryopræserverede hESC-afledte fotoreceptorstamceller og subretinal levering af disse celler i rd10-mus .

Abstract

Regenerering af fotoreceptorceller ved hjælp af humane pluripotente stamceller er en lovende terapi til behandling af både arvelige og aldrende nethindesygdomme på avancerede stadier. Vi har vist, at human rekombinant nethindespecifik laminin isoform matrix er i stand til at understøtte differentieringen af humane embryonale stamceller (hESC’er) til fotoreceptorforfædre. Derudover har subretinal injektion af disse celler også vist delvis restaurering i rd10 gnaver- og kaninmodellerne. Subretinal injektion er kendt for at være en etableret metode, der er blevet brugt til at levere farmaceutiske forbindelser til fotoreceptorcellerne og retinal pigmenteret epitel (RPE) lag i øjet på grund af dets nærhed til målrummet. Det er også blevet brugt til at levere adeno-associerede virale vektorer i sub-retinale rum til behandling af retinale sygdomme. Den subretinale levering af farmaceutiske forbindelser og celler i murine modellen er udfordrende på grund af begrænsningen i størrelsen af murine øjeæblet. Denne protokol beskriver den detaljerede procedure til fremstilling af hESC-afledte fotoreceptorstamceller til injektion og subretinal leveringsteknik for disse celler i genetisk retinitis pigmentosa-mutant, rd10-mus . Denne tilgang tillader celleterapi til det målrettede område, især det ydre nukleare lag af nethinden, hvor sygdomme, der fører til fotoreceptordegeneration, forekommer.

Introduction

Arvelige retinale sygdomme og aldersrelateret makuladegeneration fører til fotoreceptorcelletab og eventuel blindhed. Den retinale fotoreceptor er det ydre segmentlag af nethinden, der består af specialiserede celler, der er ansvarlige for fototransduktion (dvs. omdannelse af lys til neuronale signaler). Stang- og keglefotoreceptorcellerne støder op til det retinale pigmenterede lag (RPE)1. Fotoreceptorcellesubstitutionsterapi for at kompensere for celletabet har været en ny og udviklende terapeutisk tilgang. Embryonale stamceller (ESC’er)2,3,4, inducerede pluripotente stamceller (iPSC’er)-afledte RPE-celler og retinale stamceller (RPC’er)4,5,6,7,8 blev brugt til at gendanne de beskadigede fotoreceptorceller. Sub-retinal rum, et begrænset rum mellem nethinden og RPE, er et attraktivt sted at deponere disse celler for at erstatte beskadigede fotoreceptorceller, RPE og Mueller-celler på grund af dets nærhed 9,10,11.

Gen- og celleterapier har udnyttet det subretinale rum til regenerativ medicin til forskellige nethindesygdomme i prækliniske undersøgelser. Dette omfatter levering af funktionelle kopier af genet eller genredigeringsværktøjer i form af enten anti-sense oligonukleotidterapi12,13 eller CRISPR/Cas9 eller baseredigering via adeno-associeret virus (AAV) baseret strategi 14,15,16, implantation af materialer (f.eks. RPE-ark, retinale proteser 17,18,19) og differentierede stamcelleafledte retinale organoider 20,21,22 til behandling af retinale og RPE-relaterede sygdomme. Kliniske forsøg med hESC-RPE31 i subretinale rum til behandling af RPE65-associeret Leber medfødt amaurose (LCA)23,24, CNGA3-bundet achromatopsi25, MERTK-associeret retinitis pigmentosa26, choroideræmi 27,28,29,30 har vist sig at være en effektiv tilgang. Direkte injektion af celler i nærheden af det beskadigede område forbedrer i høj grad chancen for celleafvikling i det passende område, synaptisk integration og eventuel visuel forbedring.

Selvom subretinal injektion i humane og storøjede modeller (dvs. svin 32,33,34,35, kanin 36,37,38,39,40 og ikke-menneskelig primat 41,42,43) er blevet etableret, er en sådan injektion i murinmodellen stadig udfordrende på grund af begrænsningen af øjeæblestørrelsen og den enorme linse, der optager museøjet 44,45,46. Imidlertid er genetisk modificerede modeller kun let tilgængelige i små dyr og ikke i store dyr (dvs. kaniner og ikke-menneskelige primater), og derfor henleder subretinal injektion i mus opmærksomheden på at undersøge nye terapeutiske tilgange til retinale genetiske lidelser. Tre hovedmetoder bruges til at levere celler eller AAV’er ind i det subretinale rum, nemlig den trans-hornhindevej, trans-scleral rute og pars plana-ruten (se figur 2). Transhornhinde og transsklerale veje er forbundet med dannelse af grå stær, synekkier, choroidal blødning og tilbagesvaling fra injektionsstedet 11,44,45,47,48,49. Vi vedtog pars plana-tilgangen som en direkte visualisering af injektionsprocessen, og injektionsstedet kan opnås i realtid under mikroskopet.

Vi beskrev for nylig en metode, der kan differentiere humane embryonale stamceller (hESC’er) til fotoreceptorforfædre under xenofree, kemisk definerede betingelser ved hjælp af rekombinant human retina-specifik lamininisoform LN523. Da LN523 viste sig at være til stede i nethinden, antog vi, at den ekstracellulære matrixniche i den menneskelige nethinde kunne rekapituleres in vitro og derved understøtte fotoreceptordifferentiering fra hESC’erne36. Enkeltcelle transkriptomisk analyse viste, at fotoreceptorprogenitorer, der co-udtrykker keglestang, homeobox og recoverin, blev genereret efter 32 dage. En retinal degeneration 10 (rd10) mutant musemodel, der efterligner autosomal human retinitis pigmentosa, blev brugt til at evaluere effekten af dag 32 hESC-afledte fotoreceptorforfædre in vivo. De hESC-afledte fotoreceptorstamceller blev injiceret i det subretinale rum hos rd10-mus ved P20, hvor fotoceptordysfunktion og degeneration er i gang36. Her beskriver vi en detaljeret protokol til fremstilling af de postkryopræserverede hESC-afledte fotoreceptorforfædre og levering til det sub-retinale rum hos rd10-mus . Denne metode kan også bruges til at administrere AAV’er, cellesuspensioner, peptider eller kemikalier i det subretinale rum hos mus.

Protocol

In vivo-forsøgene blev udført i overensstemmelse med retningslinjerne og protokollen godkendt af Institutional Animal Care and Use Committee of SingHealth (IACUC) og Association for Research in Vision and Ophthalmology (ARVO) Statement for brug af dyr i oftalmisk og synsforskning. Ungerne blev immunsupprimeret fra P17 (prætransplantation) til P30 (efter transplantation) ved at fodre dem med drikkevand indeholdende ciclosporin (260 g/l). 1. Forberedelse af dag 32 hESC-afledte …

Representative Results

10 μL glassprøjten blev samlet i overensstemmelse med producentens anvisninger (figur 1), og den stumpe kanyle, der blev brugt til at indgive cellesuspensionen/mediet, er vist i figur 1B. Forskellige tilgange til subretinal injektion er illustreret i figur 2. Vi beskriver pars plana-tilgangen i denne protokol (figur 2C). Den stumpe nål monteret på en glassprøjte blev indsat gennem et sklerotomisår…

Discussion

Subretinal injektion er blevet anvendt til cellesuspensionstransplantation til behandling af RPE og retinale sygdomme 23,25,26,27,28,31,40. Denne tilgang er yderst vigtig i gnaverundersøgelser, ikke kun for celletransplantation og genterapimetoder, men også for at evaluere nye terapeutiske…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vi takker Wei Sheng Tan, Luanne Chiang Xue Yen, Xinyi Lee og Yingying Chung for at yde teknisk assistance til forberedelsen af dag 32 hESC-afledte fotoreceptorforfædre efter kryopræservering. Dette arbejde blev delvist støttet af tilskud fra National Medical Research Council Young Investigator Research Grant Award (NMRC / OFYIRG / 0042 / 2017) og National Research Foundation 24th Competitive Research Program Grant (CRP24-2020-0083) til HGT.

Materials

0.3% Tobramycin Novartis NDC  0078-0813-01 Tobrex (3.5 g)
0.3% Tobramycin and 0.1% Dexamethasone Novartis NDC 0078-0876-01 Tobradex (3.5 g)
0.5% Proparacaine hydrochloride Alcon NDC 0998-0016-15 0.5% Alcaine (15 mL)
1 mL Tuberculin syringe Turemo SS01T2713
1% Tropicamide Alcon NDC 0998-0355-15 1% Mydriacyl (15 mL)
2.5% Phenylephrine hydrochloride Alcon NDC 0998-0342-05 2.5% Mydfrin (5 mL)
24-well tissue culture plate Costar 3526
30 G Disposable needle Becton Dickinson (BD) 305128
33 G, 20 mm length blunt needles Hamilton 7803-05
Automated Cell Counter NanoEnTek Model: Eve
B27 without Vitamin A Life Technologies 12587001 2%36
Buprenorphine Ceva Vetergesic vet (0.3 mg/mL)
CKI-7 Sigma C0742 5 µM36
Cyclosporine Novartis 260 g/L in drinking water
Day 32 hESC-derived photoreceptor progenitor cells DUKE-NUS Medical School Human embryonic stem cells are differentiated for 32 days. See protocol in Ref 36.
Gauze Winner Industries Co. Ltd. 1SNW475-4
Glasgow Minimum Essential Medium Gibco 11710–035
hESC cell line H1 WiCell Research Institute WA01
Human brain-derived neurotrophic factor (BDNF) Peprotech 450-02-50 10 ng/mL36
Human ciliary neurotrophic factor (CNTF) Prospec-Tany Technogene CYT-272 10 ng/mL36
Ketamine hydrochloride (100 mg/mL) Ceva Santé Animale KETALAB03
LN-521 Biolamina LN521-02 1 µg36
mFreSR STEMCELL Technologies 5854
Microlitre glass syringe (10 mL) Hamilton 7653-01
N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) Selleckchem S2215 10 µM36
N-2 supplement Life Technologies A13707-01 1%36
Non-essential amino acids (NEAA) Gibco 11140–050 1x36
NutriStem XF Media Satorius 05-100-1A
Operating microscope Zeiss OPMI LUMERA 700 With Built-in iOCT function
PRDM (Photoreceptor differentiation medium, 50ml) DUKE-NUS Medical School See media composition36. Basal Medium, 10 µM DAPT, 10 ng/mL BDNF, 10 ng/mL CNTF, 0.5 µM Retinoic acid, 2% B27 and 1% N2. Basal Medium: 1x GMEM, 1 mM sodium pyruvate, 0.1 mM B-mercaptoethanol, 1x Non-essential amino acids (NEAA).
Pyruvate Gibco 11360–070 1 mM36
Rd10 mice Jackson Laboratory B6.CXB1-Pde6brd10/J mice Gender: male/female, Age: P20 (injection), Weight: 3-6 g 
Retinoic acid Tocris Bioscience 0695/50 0.5 µM36
Round Cover Slip (12 mm) Fisher Scientific 12-545-80
SB431542 Sigma S4317 0.5 µM36
Vidisic Gel (10 g) Dr. Gerhard Mann
Xylazine hydrochloride (20 mg/mL) Troy Laboratories LI0605
β-mercaptoethanol Life Technologies 21985–023 0.1 mM36

References

  1. Molday, R. S., Moritz, O. L. Photoreceptors at a glance. Journal of Cell Science. 128 (22), 4039-4045 (2015).
  2. Aboualizadeh, E., et al. Imaging Transplanted Photoreceptors in Living Nonhuman Primates with Single-Cell Resolution. Stem Cell Reports. 15 (2), 482-497 (2020).
  3. Petrus-Reurer, S., et al. Preclinical safety studies of human embryonic stem cell-derived retinal pigment epithelial cells for the treatment of age-related macular degeneration. Stem cells translational medicine. 9 (8), 936-953 (2020).
  4. Wang, S. T., et al. Transplantation of Retinal Progenitor Cells from Optic Cup-Like Structures Differentiated from Human Embryonic Stem Cells In Vitro and In Vivo Generation of Retinal Ganglion-Like Cells. Stem cells and development. 28 (4), 258-267 (2019).
  5. Wang, Z., et al. Intravitreal Injection of Human Retinal Progenitor Cells for Treatment of Retinal Degeneration. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 26, e921184-e921191 (2020).
  6. Semo, M., et al. Efficacy and Safety of Human Retinal Progenitor Cells. Translational vision science & technology. 5 (4), 6 (2016).
  7. Luo, J., et al. Human Retinal Progenitor Cell Transplantation Preserves Vision. The Journal of Biological Chemistry. 289 (10), 6362 (2014).
  8. Liu, Y., et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem cell research & therapy. 8 (1), 209 (2017).
  9. Maia, M., et al. Effects of indocyanine green injection on the retinal surface and into the subretinal space in rabbits. Retina (Philadelphia, Pa). 24 (1), 80-91 (2004).
  10. Nickerson, J. M., et al. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods in molecular biology (Clifton, N.J). 884, 53 (2012).
  11. Peng, Y., Tang, L., Zhou, Y. Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic Research. 58 (4), 217-226 (2017).
  12. Murray, S. F., et al. Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration. Investigative Ophthalmology & Visual Science. 56 (11), 6362 (2015).
  13. Cideciyan, A. V., et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proceedings of the National Academy of Sciences of the United States of America. 115 (36), E8547-E8556 (2018).
  14. Maeder, M. L., et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nature medicine. 25 (2), 229-233 (2019).
  15. Katrekar, D., et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nature methods. 16 (3), 239 (2019).
  16. Ong, T., Pennesi, M. E., Birch, D. G., Lam, B. L., Tsang, S. H. Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease. Pharmaceutical Research. 36 (2), 34 (2019).
  17. Pardue, M. T., et al. Neuroprotective effect of subretinal implants in the RCS rat. Investigative ophthalmology & visual science. 46 (2), 674-682 (2005).
  18. Liu, Z., et al. Surgical Transplantation of Human RPE Stem Cell-Derived RPE Monolayers into Non-Human Primates with Immunosuppression. Stem cell reports. 16 (2), 237-251 (2021).
  19. Martinez Camarillo, J. C., et al. Development of a Surgical Technique for Subretinal Implants in Rats. Journal of visualized experiments: JoVE. (190), e64585 (2022).
  20. Xue, Y., et al. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia-Pacific Journal of Ophthalmology. 11 (4), 314-327 (2022).
  21. McLelland, B. T., et al. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Investigative Ophthalmology and Visual Science. 59 (6), 2586-2603 (2018).
  22. Lin, B., et al. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Investigative Ophthalmology and Visual Science. 61 (11), 34 (2020).
  23. Russell, S., et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet (London, England). 390 (10097), 849-860 (2017).
  24. Testa, F., et al. Three Year Follow-Up after Unilateral Subretinal Delivery of Adeno-Associated Virus in Patients with Leber Congenital Amaurosis Type 2. Ophthalmology. 120 (6), 1283 (2013).
  25. Fischer, M. D., et al. Safety and Vision Outcomes of Subretinal Gene Therapy Targeting Cone Photoreceptors in Achromatopsia: A Nonrandomized Controlled Trial. JAMA ophthalmology. 138 (6), 643-651 (2020).
  26. Ghazi, N. G., et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Human genetics. 135 (3), 327-343 (2016).
  27. MacLaren, R. E., et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet (London, England). 383 (9923), 1129-1137 (2014).
  28. Lam, B. L., et al. Choroideremia Gene Therapy Phase 2 Clinical Trial: 24-Month Results. American journal of ophthalmology. 197, 65-73 (2019).
  29. Xue, K., et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nature medicine. 24 (10), 1507-1512 (2018).
  30. Zhai, Y., et al. AAV2-Mediated Gene Therapy for Choroideremia: 5-Year Results and Alternate Anti-sense Oligonucleotide Therapy. American Journal of Ophthalmology. 248, 145-156 (2023).
  31. Schwartz, S. D., Tan, G., Hosseini, H., Nagiel, A. Subretinal Transplantation of Embryonic Stem Cell-Derived Retinal Pigment Epithelium for the Treatment of Macular Degeneration: An Assessment at 4 Years. Investigative ophthalmology & visual science. 57 (5), ORSFc1-ORSFc9 (2016).
  32. Vu, Q. A., et al. Structural changes in the retina after implantation of subretinal three-dimensional implants in mini pigs. Frontiers in Neuroscience. 16, 1010445 (2022).
  33. Spindler, L., et al. Controlled injection pressure prevents damage during subretinal injections in pigs. Investigative Ophthalmology & Visual Science. 59 (9), 5918-5918 (2018).
  34. Yang, K., et al. Robot-assisted subretinal injection system: development and preliminary verification. BMC Ophthalmology. 22 (1), 1-10 (2022).
  35. Olufsen, M. E., et al. Controlled Subretinal Injection Pressure Prevents Damage in Pigs. Ophthalmologica. Journal international d’ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde. 245 (3), 285-293 (2022).
  36. Tay, H. G., et al. Photoreceptor laminin drives differentiation of human pluripotent stem cells to photoreceptor progenitors that partially restore retina function. Molecular therapy the journal of the American Society of Gene Therapy. 31 (3), 825-846 (2023).
  37. Petrus-Reurer, S., et al. Subretinal Transplantation of Human Embryonic Stem Cell Derived-retinal Pigment Epithelial Cells into a Large-eyed Model of Geographic Atrophy. Journal of visualized experiments: JoVE. (131), e56702 (2018).
  38. Petrus-Reurer, S., et al. Integration of subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells in a large-eyed model of geographic atrophy. Investigative Ophthalmology and Visual Science. 58 (2), 1314-1322 (2017).
  39. Babu, V. S., et al. Depleted Hexokinase1 and lack of AMPKα activation favor OXPHOS-dependent energetics in Retinoblastoma tumors. Translational research the journal of laboratory and clinical medicine. (23), 00108-00111 (2023).
  40. Plaza Reyes, A., et al. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model. Stem cell reports. 6 (1), 9-17 (2016).
  41. Takahashi, K., et al. The influence of subretinal injection pressure on the microstructure of the monkey retina. PLoS ONE. 13 (12), e0209996 (2018).
  42. Tan, G. S. W., et al. Hints for Gentle Submacular Injection in Non-Human Primates Based on Intraoperative OCT Guidance. Translational Vision Science & Technology. 10 (1), 10-10 (2021).
  43. Yiu, G., et al. Suprachoroidal and Subretinal Injections of AAV Using Transscleral Microneedles for Retinal Gene Delivery in Nonhuman Primates. Molecular therapy. Methods & clinical development. 16, 179-191 (2020).
  44. Mühlfriedel, R., Michalakis, S., Garrido, M. G., Biel, M., Seeliger, M. W. Optimized Technique for Subretinal Injections in Mice. Methods in Molecular Biology. 935, 343-349 (2012).
  45. Huang, P., et al. Subretinal injection in mice to study retinal physiology and disease. Nature Protocols. 17 (6), 1468-1485 (2022).
  46. Huang, P., et al. The Learning Curve of Murine Subretinal Injection Among Clinically Trained Ophthalmic Surgeons. Translational Vision Science & Technology. 11 (3), 13 (2022).
  47. Qi, Y., et al. Trans-Corneal Subretinal Injection in Mice and Its Effect on the Function and Morphology of the Retina. PLOS ONE. 10 (8), e0136523 (2015).
  48. Irigoyen, C., et al. Subretinal Injection Techniques for Retinal Disease: A Review. Journal of Clinical Medicine. 11 (16), 4717 (2022).
  49. Parikh, S., et al. An Alternative and Validated Injection Method for Accessing the Subretinal Space via a Transcleral Posterior Approach. Journal of visualized experiments: JoVE. (118), e54808 (2016).
  50. Amer, M. H., White, L. J., Shakesheff, K. M. The effect of injection using narrow-bore needles on mammalian cells: Administration and formulation considerations for cell therapies. Journal of Pharmacy and Pharmacology. 67 (5), 640-650 (2015).

Play Video

Cite This Article
Tun, S. B. B., Shepherdson, E., Tay, H. G., Barathi, V. A. Sub-Retinal Delivery of Human Embryonic Stem Cell Derived Photoreceptor Progenitors in rd10 Mice. J. Vis. Exp. (200), e65848, doi:10.3791/65848 (2023).

View Video