Summary

小鼠嵌合抗原受体(CAR)-T细胞的高效生成

Published: February 02, 2024
doi:

Summary

该方案简化了逆转录病毒载体的产生和小鼠T细胞的转导,促进了小鼠CAR-T细胞的高效生成。

Abstract

利用嵌合抗原受体(CAR)-T细胞的工程细胞疗法在血液系统恶性肿瘤患者中取得了显着的疗效,目前正在开发用于治疗各种实体瘤。到目前为止,新型CAR-T细胞产品的初步评估主要在使用免疫缺陷小鼠的异种移植肿瘤模型中进行。选择这种方法是为了促进人类CAR-T细胞在实验环境中的成功植入。然而,肿瘤和CAR-T细胞来源于同一小鼠品系的同基因小鼠模型允许在功能免疫系统和综合肿瘤微环境(TME)的背景下评估新的CAR技术。此处描述的方案旨在通过提供逆转录病毒转导和 离体 T细胞培养的标准化方法来简化小鼠CAR-T细胞生成过程。本协议中描述的方法可应用于本研究中使用的方法以外的其他CAR构建体,以便在免疫能力系统中对新的CAR技术进行常规评估。

Introduction

表达嵌合抗原受体 (CAR) 的过继性 T 细胞疗法通过利用适应性免疫系统的力量特异性靶向和消除抗原阳性癌细胞,彻底改变了癌症免疫治疗领域1。虽然靶向B细胞恶性肿瘤的CAR-T细胞疗法的成功已经得到临床验证,但在动物模型中进行的临床前研究对于开发靶向实体瘤的新型CAR仍然至关重要。然而,到目前为止,在实体瘤适应症中已证明临床疗效有限,并且越来越明显的是,单个临床前模型无法准确预测活体药物的药效学和临床疗效2,3。因此,研究人员已开始扩大CAR-T细胞产品的临床前研究,分别包括人类和小鼠癌症的异种移植和同基因模型的平行评估。

与异种移植模型不同,异种移植模型将人类肿瘤和T细胞移植到免疫缺陷小鼠中,同基因模型能够在功能免疫系统的背景下检查CAR-T细胞反应。具体来说,携带同基因肿瘤的免疫能力小鼠提供了一个系统来研究过继转移的 T 细胞与环境特异性环境之间的相互作用——包括已知抑制肿瘤微环境 (TME) 中 T 细胞功能的肿瘤相关巨噬细胞 (TAM) 和调节性 T 细胞 (Tregs)4,5,6.此外,同基因模型提供了一个额外的平台来评估靶向、肿瘤外毒性以及 CAR-T 细胞与可能导致其他毒性(包括细胞因子释放综合征)的宿主因子的相互作用 7

尽管有这些优势,但同基因CAR-T细胞研究的数量仍然有限。值得注意的是,同基因模型需要对来自同一小鼠品系的 CAR-T 细胞进行自体工程改造,因此由于缺乏高效的小鼠 T 细胞转导和离体扩增的方法,因此提出了额外的挑战 2,8。该协议概述了通过产生逆转录病毒载体和优化的T细胞转导来实现稳定CAR表达的方法。整个过程的示意图如图1所示。这种方法的使用证明了小鼠CAR-T细胞的有效逆转录病毒转导,并且无需通过超速离心实现高CAR表达,而无需病毒浓缩。除了其他转基因的共表达外,还讨论了改变CAR构建体抗原特异性的策略。

Protocol

所有动物程序均在机构动物护理和使用委员会(哥伦比亚大学,协议AC-AABQ5551和AC-AAAZ4470)的批准下使用体重在20-25克之间的6-8周龄雌性BALB / c或CF57BL / 6小鼠进行。这些动物是从商业来源获得的(见 材料表)。该协议围绕小鼠 T 细胞的“激活后天数”构建,病毒产生从第 -2 天开始。逆转录病毒在初始生产后可以储存在-80°C,并且对于该方案的未来使用,可以从步骤2开始,在第0天分离?…

Representative Results

这里描述的方案旨在标准化小鼠T细胞转导产生小鼠CAR-T细胞的过程。 图 1 提供了所涉及步骤的详细说明。该过程始于 通过 将病毒成分共转染到 Phoenix Eco 细胞中来生产逆转录病毒载体。 图 2 显示了转染当天 Phoenix Eco 细胞的最佳密度图像。然后,在转染后24小时或本方案的“第0天”激活分离的T细胞,为第1天的转导做准备。转导后,CAR-T细胞在重…

Discussion

该方案描述了小鼠T细胞逆转录病毒转导以产生用于 体内 研究的CAR-T细胞所需的步骤和试剂。优化逆转录病毒转导条件可实现稳健的CAR表达,而无需通过超速离心或其他试剂进行病毒浓缩。但是,可以对这种方法进行多种修改。

虽然该协议描述了GFP特异性CAR的示例生成,但这些方法可以适应于生成靶向任何感兴趣的细胞外抗原的小鼠CAR-T细胞。本研究中使用的pMSCV_PGK逆?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 L. Brockmann 对手稿的严格审阅。这项工作得到了 NIH 1R01EB030352 和 UL1 TR001873 的支持。

Materials

0.45 μm filters MilliporeSigma SLHVR33RS
1 mL syringe  Fisher Scientific  14-955-450
1.5 mL microcentrifuge tubes  Fisher Scientific  05-408-135
10 mL syringe  BD 14-823-16E
100 μm strainer Corning 07-201-432
15 cm TC treated cell culture dishes ThermoFisher Scientific  130183
15 mL conical tubes  Falcon 14-959-70C
40 μm strainer  Corning 07-201-430
50 mL conical tubes  Falcon 14-959-49A
70 μm strainer Corning 07-201-431
Attune NxT Flow Cytometer  ThermoFisher Scientific 
BALB/C, 6-8 week old  Jackson Laboratory 651
B-Mercaptoethanol  Gibco 21985023
Bovine Serum Albumin  GOLDBIO A-420-500
DMEM Medium Gibco 11965092
Dulbecco's Phosphate Buffered Saline (PBS), without Calcium and Magnesium  Gibco 14-190-250
DynaMag-2 Magnet  Invitrogen 12-321-D
EasySep Magnet  Stemcell Technologies 18000
EasySep Mouse T cell Isolation Kit Stemcell Technologies 19851
FACS buffer  BD BDB554657
Fetal bovine serum (FBS)  Corning MT35011CV
GlutaMAX Gibco 35-050-061
G-Rex6 Wilson Wolf 80240M 
HEPES Buffer Solution  Gibco 15-630-080
Human recombinant IL-15  Miltenyi Biotec 130-095-765
Human recombinant IL-2 Miltenyi Biotec 130-097-748
Human recombinant IL-7 Miltenyi Biotec 130-095-363
Lipofectamine 3000 Invitrogen L3000008
MEM Non-Essential Amino Acids Solution  Gibco 11140-050
Mouse Anti-CD3 BV421 Biolegend 100228
Mouse Anti-CD3/CD28 Dynabeads Gibco 11-453-D
Mouse Anti-CD4 BV605 BD 563151
Mouse Anti-CD44 APC  Biolegend 103011
Mouse Anti-CD62L PE-Cy7 Tonbo SKU 60-0621-U025
Mouse Anti-CD8 APC-Cy7 Tonbo SKU 25-0081-U025
Nikon Ti2 with Prime 95B camera  Nikon
Non-treated 24 well plates  CytoOne CC7672-7524
Opti-MEM Gibco 31-985-062
pCL-Eco Addgene #12371
Penicillin/Streptomycin Solution Gibco 15-070-063
Phoenix Eco cells ATCC CRL-3214
pMDG.2 Addgene #12259
pMSCV_PGK_GFP28z N/A Produced by R.LV.
Purified sfGFP N/A Produced by R.LV.
RetroNectin ('transduction reagent') Takara Bio T100B
RPMI 1640 Gibco 21875
Serological pipette 10 mL Fisher Scientific  13-678-11E
Serological pipette 25 mL Fisher Scientific  13-678-11
Serological pipette 5 mL Fisher Scientific  13-678-11D
Sodium Pyruvate Gibco 11-360-070
TC-treated 24 well plates  Corning 08-772-1
Trypan blue  Gibco 15-250-061

References

  1. June, C. H., Sadelain, M. Chimeric antigen receptor therapy. N Engl J Med. 379 (1), 64-73 (2018).
  2. Duncan, B. B., Dunbar, C. E., Ishii, K. Applying a clinical lens to animal models of car-t cell therapies. Mol Ther Methods Clin Dev. 27, 17-31 (2022).
  3. Hou, A. J., Chen, L. C., Chen, Y. Y. Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov. 20 (7), 531-550 (2021).
  4. Campesato, L. F., et al. Blockade of the ahr restricts a treg-macrophage suppressive axis induced by l-kynurenine. Nat Commun. 11 (1), 4011 (2020).
  5. Kaneda, M. M., et al. Pi3kgamma is a molecular switch that controls immune suppression. Nature. 539 (7629), 437-442 (2016).
  6. Hyrenius-Wittsten, A., Roybal, K. T. Paving new roads for cars. Trends Cancer. 5 (10), 583-592 (2019).
  7. Giavridis, T., et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by il-1 blockade. Nat Med. 24 (6), 731-738 (2018).
  8. Lanitis, E., et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of il-15 coexpression. J Exp Med. 218 (2), e20192203 (2021).
  9. Lambeth, C. R., White, L. J., Johnston, R. E., De Silva, A. M. Flow cytometry-based assay for titrating dengue virus. J Clin Microbiol. 43 (7), 3267-3272 (2005).
  10. Agarwal, S., Wellhausen, N., Levine, B. L., June, C. H. Production of human crispr-engineered CAR-T cells. J Vis Exp. 169, e62299 (2021).
  11. JoVE Science Education Database. Lab Animal Research. Sterile Tissue Harvest. , (2023).
  12. Giordano-Attianese, G., et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for t-cell therapy. Nat Biotechnol. 38 (4), 426-432 (2020).
  13. Kuhn, N. F., et al. Cd40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell. 35 (3), 473-488.e6 (2019).
  14. Jin, C., Ma, J., Ramachandran, M., Yu, D., Essand, M. CAR T cells expressing a bacterial virulence factor trigger potent bystander antitumour responses in solid cancers. Nat Biomed Eng. 6 (7), 830-841 (2022).
  15. Kurachi, M., et al. Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function. Nat Protoc. 12 (9), 1980-1998 (2017).
  16. Jafarzadeh, L., Masoumi, E., Fallah-Mehrjardi, K., Mirzaei, H. R., Hadjati, J. Prolonged persistence of chimeric antigen receptor (CAR) T cell in adoptive cancer immunotherapy: Challenges and ways forward. Front Immunol. 11, 702 (2020).
  17. Elkassar, N., Gress, R. E. An overview of IL-7 biology and its use in immunotherapy. J Immunotoxicol. 7 (1), 1-7 (2010).
  18. Osinalde, N., et al. Simultaneous dissection and comparison of IL-2 and IL-15 signaling pathways by global quantitative phosphoproteomics. Proteomics. 15 (2-3), 520-531 (2015).
  19. Eremenko, E., et al. An optimized protocol for the retroviral transduction of mouse CD4 T cells. STAR Protoc. 2 (3), 100719 (2021).
  20. Lewis, M. D., et al. A reproducible method for the expansion of mouse CD8+ T lymphocytes. J Immunol Methods. 417, 134-138 (2015).
check_url/kr/65887?article_type=t

Play Video

Cite This Article
Vincent, R. L., Li, F., Ballister, E. R., Arpaia, N., Danino, T. Efficient Generation of Murine Chimeric Antigen Receptor (CAR)-T Cells. J. Vis. Exp. (204), e65887, doi:10.3791/65887 (2024).

View Video