Summary

マウス脊髄ミクログリアの迅速かつ効率的な濃縮

Published: September 22, 2023
doi:

Summary

ミクログリアは、体内で最も用途の広い細胞の一部と見なされており、形態学的および機能的適応が可能です。それらの不均一性と多機能性は、脳の恒常性の維持を可能にすると同時に、さまざまな神経学的病態にも関連しています。ここでは、脊髄ミクログリアを浄化する技術について説明する。

Abstract

脊柱は脊椎動物を定義し、脊柱管、脊髄を囲んで保護する空洞を形作ります。哺乳類の中枢神経系の適切な発達と機能は、ミクログリアとして知られる常在マクロファージの活性に大きく依存しています。ミクログリアは不均一性と多機能性を示し、脊髄と脳内で異なる遺伝子発現と挙動を可能にします。多くの研究が大脳ミクログリアの機能を調査し、精製方法を広範囲に詳述しています。しかし、マウスの脊髄からのミクログリアの精製は包括的な説明を欠いています。対照的に、未精製の抽出物とは対照的に、高度に精製されたコラゲナーゼの利用は、中枢神経系組織内での報告を欠いています。この研究では、8〜10週齢のC57BL/6マウスから脊柱と脊髄を切除しました。その後の消化には高度に精製されたコラゲナーゼが用いられ、ミクログリアの精製には密度勾配が用いられました。細胞はフローサイトメトリーで染色し、CD11bおよびCD45染色により生存率と純度を評価しました。その結果、平均生存率は80%、平均純度は95%でした。結論として、マウスミクログリアのマニピュレーションには、高度に精製されたコラゲナーゼによる消化とそれに続く密度勾配が含まれていました。このアプローチは、かなりの脊髄ミクログリア集団を効果的に生み出しました。

Introduction

脊椎動物の決定的な特徴は脊柱または脊椎であり、脊索は椎骨と呼ばれる一連のセグメント化された骨に置き換えられ、椎間板によって分割されています。この骨質物質の連続は、脊柱管、脊髄1を囲んで保護する空洞を形作る。げっ歯類属では、脊椎は通常、7つの頸椎、13の胸椎、6つの腰椎、および可変数の尾椎によって形成されます2,3。脊髄の長さは脊椎の長さに似ており、末端糸は脊髄を仙骨に固定する非神経構造です。さらに、神経線維は椎間孔1から出ます。

哺乳類における中枢神経系の発達と適切な機能は、ミクログリアと呼ばれる神経系に常在するマクロファージの活性に決定的に依存しています4。ミクログリアは当初、脳に常在する食細胞として説明されていましたが、最近の研究では、これらの細胞に多くの動的機能が起因しています5,6。ミクログリアのサイズは、ホメオスタシスにおいて7〜10μmの範囲です。それらは体内で最も用途の広い細胞の一つと考えられており、絶えず変化する環境に形態学的および機能的に適応することができます7。これらの細胞は、胚期と成体期の両方で高い不均一性を示しますが8,9、成体期では、時空間的文脈に基づいて複雑な機能的不均一性も示します10。ミクログリアの不均一性と複数の機能は、脊髄と脳における遺伝子発現と挙動の違いを可能にします。CD11b、CD45、CD86、およびCCR9の発現は、脳と比較して脊髄で高いことが示されています8,9

脳ミクログリアの分離には複数のプロトコルが存在します11,12;しかし、脊髄ミクログリアについてはごくわずかしか存在しない13,14。脊髄からミクログリアを精製する方法を最適化することで、ミクログリアの生理学の発見に焦点を当てた複数の研究の開発が容易になります。このプロトコルはマウス脊髄の簡単で、非常に再現性が高い抽出およびミクログリア(図1)の浄化を記述することを向ける。

Protocol

この研究は、メキシコの公式規格NOM-062-ZOO-1999および実験動物のケアと使用に関するガイドに従って実施されました。本研究の承認は、メキシコ小児病院の研究・倫理・バイオセーフティ委員会(HIM/2023/006)およびメキシコ総合病院の研究・生命倫理委員会(DI/21/501/04/62)から得られました。生後6〜8週齢の3匹のC57BL/6マウスをメキシコ小児病院から入手し、施設の動物飼育および使用ガイドライン?…

Representative Results

マウスの脊髄組織を利用し、コラゲナーゼとサーモリシンを高度に濃縮した混合物を用いて酵素消化を行いました。得られた消化された組織は、未消化物質を除去するために40μmフィルターを通過しました。収集した細胞は、下部に90%、上部に45%のパーコール密度勾配で濃縮しました。次に、界面内のミクログリア濃縮細胞をCD45およびCD11b抗体で染色し、フローサイトメトリー解析を行いま?…

Discussion

ミクログリアの研究のために、脳の恒常性におけるミクログリアの重要性から、数多くのプロトコルが開発されてきました。これらの方法では、ミクログリアは典型的には、胎児または新生仔のラットおよびマウスの大脳半球に由来する17。成体マウスの脊髄からのミクログリアの精製を扱った研究は限られている13,14。これらの?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この研究は、全米科学技術評議会(CONACYT)(702361)から授与された奨学金からの助成金によって支援されました。著者らは、国立工科大学の国立生物科学部の生物化学科学の博士課程プログラムを認めています。

Materials

15 mL collection tubes Corning, USA 430790
2 mL microtubes Axygen, USA MCT-200-G
2.4G2 anti-FcR BioLegend, USA 101302
50 mL collection tubes Corning, USA 430829
70% ethanol
Antibiotic-Antimycotic (penicillin, streptomycin, amphotericin b) Gibco, USA 15240062
Antibody CD11b eFluor 450 anti-mouse eBioscience, USA 48-0112
Antibody CD45 PerCP anti-mouse   BioLegend, USA 103130
Balanced salt solution (PBS) calcium- magnesium-free Corning, USA 46-013-CM
Blue Cell Strainer 40 μm Corning, USA 352340
Costar 6-well Clear Not Treated  Corning, USA CLS3736
Coverslips
Digital Heating Shaking Drybath  Thermo Scientific Digital HS Drybath, USA 88870001
Dissecting forceps for microsurgery FT by DUMONT
DNase Roche, USA 4536282001
Dulbecco´s Modified Eagle´s Medium-high glucose (DMEM)  Merck, USA D6429
Electric shaver
FACS tube Thermo, USA 352058
Fetal bovine serum (FBS) PAN Biotech, Alemania P30-3306
Flow cytometer Cytoflex  Beckman Coulter
Hank’s balanced salt solution  Merck, USA H2387
L-glutamine Corning, USA  15393631
Liberase TM  Roche, USA 5401119001
Neubauer chamber Counting Chambers China 1103
Pentobarbital
Percoll  Merck, USA 17089101 density gradient centrifugation 
Poly-L-lysine solution  Merck, USA P8920
Scalpel No. 25  HERGOM, Mexico H23
Snaplock Microcentrifuge Tubes 2 mL Axygen, USA 10011-680
Stereoscopic microscope Velab, Mexico HG927831
Straight surgical scissors (10 cm) HERGOM, Mexico
Straight Vannas scissors HERGOM, Mexico
Triton X100 Merck, USA X100
Trypan blue Stain 0.4%  Merck, USA 15250-061
Vortex mixer DLAB, China 8031102000
Zombie Aqua Fixable Viability Kit BioLegend, USA 423102 amine-reactive fluorescent dye staining 

References

  1. Schröder, H., Schröder, , Moser, , Huggenberger, , et al. . Neuroanatomy of the Mouse. , 59-78 (2020).
  2. Sengul, G., et al. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse. Anat Rec. 295, 837-845 (2012).
  3. Bab, I., et al. . Microtomographic atlas of the mouse skeleton. VIII, 205 (2007).
  4. Nayak, D., et al. Microglia development and function. Annu Rev Immunol. 32, 367-402 (2014).
  5. Martinez, F. O., et al. Macrophage activation and polarization. Front Biosci. 13, 453-461 (2008).
  6. Masuda, T., et al. Microglia heterogeneity in the single-cell era. Cell Rep. 30 (5), 1271-1281 (2020).
  7. Prinz, M. Microglia biology: one century of evolving concepts. Cell. 179 (2), 292-311 (2019).
  8. de Haas, A. H., et al. Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia. 56 (8), 888-894 (2008).
  9. Xuan, F. L., et al. Differences of microglia in the brain and the spinal cord. Front Cell Neurosci. 13, 504 (2019).
  10. Paolicelli, R. Microglia states and nomenclature: A field at its crossroads. Neuron. 110 (21), 3458-3483 (2022).
  11. Li, Q., et al. Spinal IL-36γ/IL-36R participates in the maintenance of chronic inflammatory pain through astroglial JNK pathway. Glia. 67 (3), 438-451 (2019).
  12. Prinz, M., et al. Microglia and central nervous system-associated macrophages-from origin to disease modulation. Annu Rev Immunol. 39, 251-277 (2021).
  13. Yip, P. K., et al. Rapid isolation and culture of primary microglia from adult mouse spinal cord. J Neurosci Methods. 183 (2), 223-237 (2009).
  14. Akhmetzyanova, E. R., et al. Severity- and time-dependent activation of microglia in spinal cord injury. Int J Mo. Sci. 24 (9), 1-16 (2023).
  15. Mahadevan, V. Anatomy of the vertebral column. Surgery. 36 (7), 327-332 (2018).
  16. Krukowski, K., et al. Temporary microglia-depletion after cosmic radiation modifies phagocytic activity and prevents cognitive deficits. Sci Rep. 8 (1), 1-13 (2018).
  17. Cardona, A., et al. Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat Protoc. 1, 1947-1951 (2006).
  18. Schmidt, V. M., et al. Comparison of the enzymatic efficiency of Liberase TM and tumor dissociation enzyme: effect on the viability of cells digested from fresh and cryopreserved human ovarian cortex. Reprod Biol Endocrinol. 16 (57), 1-14 (2018).
  19. Kusminski, C. M., et al. MitoNEET-parkin effects in pancreatic α- and β-cells, cellular survival, and intrainsular cross talk. Diabetes. 65 (6), 1534-1555 (2016).
check_url/kr/65961?article_type=t

Play Video

Cite This Article
Gutiérrez-Román, C. I., Meléndez Camargo, M. E., García Rojas, C. C., Jimenez Olvera, M., Gutiérrez Román, S. H., Medina-Contreras, O. Rapid and Efficient Enrichment of Mouse Spinal Cord Microglia. J. Vis. Exp. (199), e65961, doi:10.3791/65961 (2023).

View Video