Summary

Epon Post 嵌入相关光和电子显微镜

Published: January 12, 2024
doi:

Summary

我们提出了使用称为 mScarlet 的荧光蛋白进行 Epon 嵌入后相关光学和电子显微镜的详细方案。这种方法可以同时保持荧光和超微结构。该技术适用于各种生物应用。

Abstract

相关光电子显微镜(CLEM)是一种综合显微镜,它结合了荧光显微镜(FM)提供的定位信息和电子显微镜(EM)获取的细胞超微结构的背景。CLEM是荧光和超微结构之间的权衡,通常,超微结构会影响荧光。与其他亲水性包埋树脂(如甲基丙烯酸缩水甘油酯、HM20或K4M)相比,Epon在超微结构保存和切片性能方面更胜一筹。此前,我们已经证明mEosEM可以在四氧化锇固定和Epon包埋中存活。使用mEosEM,我们首次实现了EPON后嵌入CLEM,它同时保持荧光和超微结构。在这里,我们提供了有关 EM 样品制备、FM 成像、EM 成像和图像对齐的分步详细信息。我们还改进了在 EM 成像期间识别 FM 成像的相同细胞的程序,并详细说明了 FM 和 EM 图像之间的配准。我们相信,在传统的电磁设施中,按照这种新协议,可以很容易地实现嵌入相关光和电子显微镜的Epon后。

Introduction

荧光显微镜(FM)可用于获得靶蛋白的定位和分布。然而,靶蛋白周围的背景丢失了,这对于彻底研究靶蛋白至关重要。电子显微镜 (EM) 具有最高的成像分辨率,可提供多个亚细胞细节。然而,EM缺乏靶标标记。通过将FM采集的荧光图像与EM采集的灰度图像精确合并,相关光电子显微镜(CLEM)可以将这两种成像模式1,2,3,4获得的信息结合起来。

CLEM 是荧光和超微结构之间的权衡 1.由于目前荧光蛋白和传统电镜样品制备程序的局限性,特别是使用锇酸(OsO4)和疏水性树脂(如Epon),超微结构总是影响荧光5。OsO4 是 EM 样品制备中不可或缺的试剂,用于提高 EM 图像的对比度。与其他包埋树脂相比,Epon 在超微结构保存和切片性能方面更胜一筹5。然而,在OsO4 和Epon embedding6处理后,没有荧光蛋白可以保留荧光信号。为了克服荧光蛋白的局限性,开发了预包埋 CLEM,其中 FM 成像在 EM 样品制备之前完成 6。然而,预嵌入 CLEM 的缺点是 FM 和 EM 图像之间的配准不精确5.

相反,嵌入后CLEM方法在EM样品制备后进行FM成像,其配准精度可达6-7nm 5,6。为了保留荧光蛋白的荧光,使用极低浓度的OsO4(0.001%)3或高压冷冻(HPF)和冷冻取代(FS)EM制备方法4,7,以牺牲超微结构受损或EM图像的对比度为代价。尽管使用甲基丙烯酸缩水甘油酯作为包埋树脂5,但mEos4b的发展极大地促进了包埋后CLEM的进展。随着 mEosEM 的发展,该 mEosEM 可以在 OsO4 染色和 Epon 包埋中存活下来,首次实现了 Epon 后包埋超分辨率 CLEM,同时保持了荧光和超微结构6.在 mEosEM 之后,开发了几种可以在 OsO4 染色和 Epon 包埋中存活的荧光蛋白 8,9,10,11这极大地促进了CLEM的发展。

Epon 嵌入后 CLEM 有三个关键方面。首先是荧光蛋白,在EM样品制备后应保持荧光信号。根据我们的经验,mScarlet优于其他报道的荧光蛋白。第二个是如何在EM成像中找到通过FM成像成像的相同细胞。为了解决这个问题,我们改进了这一步的程序,以便人们可以很容易地找到目标细胞。最后一种是将 FM 图像与 EM 图像对齐的方法。在这里,我们详细介绍了 FM 和 EM 图像之间的配准。在该协议中,我们在 VGLUT2 神经元中表达 mScarlet,并证明 mScarlet 可以使用 Epon 嵌入后 CLEM 靶向二级溶酶体。我们提供了 Epon 嵌入后 CLEM 的分步细节,而不会影响荧光和超微结构。

Protocol

畜牧业和实验经福建医科大学医学中心机构动物护理与使用委员会批准。当前协议的分步工作流程如 图 1 所示。 1. 样品制备 小鼠大脑购买转基因小鼠(见 材料表)和寡核苷酸引物(见 材料表)对这些小鼠进行基因分型。 按照先前发布的方案12,13 ?…

Representative Results

先前的报道表明,mScarlet可以靶向溶酶体15。在该方案中,使用立体定位仪器将表达 mScarlet 的 AAV (rAAV-hSyn-DIO-mScarlet-WPRE-pA) 注射到 Vglut2-ires-cre 小鼠大脑的 M1 (ML: ±1.2 AP: +1.3 DV: -1.5) 中。按照上述协议,最终的相关图像如图4A所示。使用金纳米颗粒(绿点)作为基准标记,FM图像可以与EM图像精确对齐。如EM图像(图4C,F</s…

Discussion

这里介绍的方案是一种通用成像方法,它可以结合光学显微镜 (LM) 中靶蛋白的定位信息和电子显微镜 (EM) 中靶蛋白周围的背景6。由于目前荧光蛋白的局限性,广泛使用的方法是预嵌入相关光和电子显微镜 (CLEM),这意味着 LM 成像是在 EM 样品制备之前完成的。几乎所有现有的荧光蛋白都可以在预包埋CLEM中进行检查。然而,由于不可避免的失真和收缩,最终图像的精确对?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该项目得到了国家自然科学基金(32201235傅志飞)、福建省自然科学基金(2022J01287致傅志飞)、福建医科大学先进人才研究基金(XRCZX2021013傅志飞)、福建省金融专项科学基金(22SCZZX002致傅志飞)的支持。 国家卫健委非人灵长类动物生育力调控技术评价重点实验室、福建省妇幼保健院成立(2022-NHP-04致傅志飞)。我们感谢福建医科大学公共技术服务中心的Linying 周、Minxia Wu、习 Lin和Yan 胡在EM样品制备和EM成像方面的支持。

Materials

0.2 M Phosphate Buffer (PB) NaH2PO4 · 2H2O+Na2HPO4 · 12H2O
0.2 M Tris-Cl (pH 8.5) Shanghai yuanye Bio-Technology R26284
25% Glutaraldehyde (GA) Alfa Aesar A17876 Hazardous chemical
Abbelight 3D Nanolnsights
Acetone SCR 10000418
Ammonium hydroxide J&K Scientific 335213
BioPhotometer D30 eppendorf
Cleaning buffer of cover glasses 50 mL Ammonium hydroxide, 50 mL Hydrogen peroxide, 250 mL H2O
Coverglass Warner 64-0715
DABCO  Sigma 290734 Hazardous chemical
DDSA SPI company GS02827 Hazardous chemical
Desktop centrifuge WIGGENS MINICEN 10E
Diamond knife DiATOME MX6353
DMP-30 SPI company GS02823 Hazardous chemical
DNA transfection reagent Thermo Fisher  2696953 Lipofectamine 3000 Transfection Kit
Epon 812  SPI company GS02659 Hazardous chemical
Ethanol SCR 10009218
Fiji image J National Institutes of Health
Fixative solution  4% PFA+0.25% GA+0.02 M PB
Formvar Sigma 9823
Glycerol SCR 10010618
Gold nanoparticles Corpuscular 790120-010
Gradient resin Acetone to resin 3:1, 1:1, 1:3
Hydrofluoric acid SCR 10011118
Hydrogen peroxide SCR 10011218
ICY (https://icy.bioimageanalysis.org/about/) Easy CLEMv0 Plugin
Imaging chamber Thermo Fisher  A7816
Large gelatin capsules Electron Microscopy Sciences 70117
Mounting buffer Mowiol 4-88, Glycerol, 0.2 M Tris-Cl (pH 8.5), DABCO
Mowiol 4-88 Sigma 9002-89-5
Na2HPO4 ž12H2O SCR 10020318
NaH2PO4 ž2H2O SCR 20040718
NMA SPI company GS02828 Hazardous chemical
Oligonucleotide primers Takara Biomedical Technology (Beijing) Three oligonucleotides primers were used to detect Vglut2-ires-Cre and wild-type simultaneously. The primers 5,-ATCGACCGGTAATGCAGGCAA-3, and 5,-CGGTACCACCAAATCTTACGG-3, aimed to detect Vglut2-ires-Cre. The primers  5,-CGGTACCACCAAATCTTACGG-3, and 5,-CATGGTCTGTTTTGAATTCAG-3, aimed to detect wild-type.
Oscillating microtome Leica VT1000S
Osmium tetroxide SCR L01210302 Hazardous chemical
OsO4 solution 1% Osmium tetroxide+1.5% K4Fe (CN)6·3H2O
Parafilm Amcor PM-996
Paraformaldehyde (PFA) SCR 80096618 Hazardous chemical
Perfusion buffer 4% PFA+0.1 M PB
Pioloform Sigma 63148-65-2 Hazardous chemical
Poly-L-lysine  Sigma 25986-63-0
Potassium ferrocyanide (K4Fe (CN)6·3H2O)  SCR 10016818
Scalpel blades Merck S2771
Scalpel handles Merck S2896-1EA
Stereomicroscope OLYMPUS MVX10
Transgenic mice The Jackson Laboratory Vglut2-ires-Cre mice (strain: 129S6/SvEvTac) were housed in standard conditions (25 °C, a 12 h light/dark cycle, with water and food given ad libitum. Male and Female mice were used at 2–3 months old, weight range 20-30 g.  
Transmission electron microscope (TEM) FEI TECNAL G2
UA solution (2% UA) Aqueous solution
Ultramicrotome Leica LEICA EM UC6
Uranyl acetate (UA) TED PELLA 19481 Hazardous chemical

References

  1. de Boer, P., Hoogenboom, J. P., Giepmans, B. N. Correlated light and electron microscopy: ultrastructure lights up. Nat Methods. 12 (6), 503-513 (2015).
  2. Kopek, B. G., et al. Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nat Protoc. 12 (5), 916-946 (2017).
  3. Watanabe, S., et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods. 8 (1), 80-84 (2011).
  4. Johnson, E., et al. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci Rep. 5 (1), 9583 (2015).
  5. Paez-Segala, M. G., et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods. 12 (3), 215-218 (2015).
  6. Fu, Z., et al. mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM. Nat Methods. 17 (1), 55-58 (2020).
  7. Kukulski, W., et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol. 192 (1), 111-119 (2011).
  8. Peng, D., et al. Improved fluorescent proteins for dual-colour post-embedding CLEM. Cells. 11 (7), 1077 (2022).
  9. Campbell, B. C., Paez-Segala, M. G., Looger, L. L., Petsko, G. A., Liu, C. F. Chemically stable fluorescent proteins for advanced microscopy. Nat Methods. 19 (12), 1612-1621 (2022).
  10. Tanida, I., et al. Two-color in-resin CLEM of Epon-embedded cells using osmium resistant green and red fluorescent proteins. Sci Rep. 10 (1), 21871 (2020).
  11. Tanida, I., Kakuta, S., Oliva Trejo, J. A., Uchiyama, Y. Visualization of cytoplasmic organelles via in-resin CLEM using an osmium-resistant far-red protein. Sci Rep. 10 (1), 11314 (2020).
  12. MacManus, D. B. Excision of whole intact mouse brain. MethodsX. 10, 102246 (2023).
  13. Lu, X., et al. Preserving extracellular space for high-quality optical and ultrastructural studies of whole mammalian brains. Cell Rep Methods. 3 (7), 24 (2023).
  14. Paul-Gilloteaux, P., et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat Methods. 14 (2), 102-103 (2017).
  15. Fenno, L. E., et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron. 107 (5), 836-853 (2020).
  16. Shcherbo, D., et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem J. 418 (3), 567-574 (2009).
  17. Shen, Y., Chen, Y., Wu, J., Shaner, N. C., Campbell, R. E. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. PLoS One. 12 (2), e0171257 (2017).
  18. Ai, H. W., Olenych, S. G., Wong, P., Davidson, M. W., Campbell, R. E. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol. 6 (13), 1741 (2008).
  19. Ogoh, K., et al. Dual-color-emitting green fluorescent protein from the sea cactus Cavernularia obesa and its use as a pH indicator for fluorescence microscopy. Luminescence. 28 (4), 582-591 (2013).
  20. Bindels, D. S., et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods. 14 (1), 53-56 (2017).
  21. Xu, P., Xu, T., Zhang, M., Fu, Z., He, W. A protocol for Epon-embedding-based correlative super-resolution light and electron microscopy. Research Square. , (2019).
  22. Johnson, E., Kaufmann, R. Preserving the photoswitching ability of standard fluorescent proteins for correlative in-resin super-resolution and electron microscopy. Methods Cell Biol. 140, 49-67 (2017).
  23. Zhou, S., et al. Liquid-liquid phase separation mediates the formation of herpesvirus assembly compartments. J Cell Biol. 222 (1), 17 (2023).
  24. Tao, C. L., et al. Differentiation and characterization of excitatory and inhibitory synapses by cryo-electron tomography and correlative microscopy. J Neurosci. 38 (6), 1493-1510 (2018).

Play Video

Cite This Article
Wang, S., Xiong, H., Chang, Q., Zhuang, X., Wu, Y., Wang, X., Wu, C., Fu, Z. Epon Post Embedding Correlative Light and Electron Microscopy. J. Vis. Exp. (203), e66141, doi:10.3791/66141 (2024).

View Video