Summary

非人灵长类动物的神经植入物设计工具箱

Published: February 09, 2024
doi:

Summary

本文概述了基于磁共振成像 (MRI) 扫描的非人灵长类动物神经外科计划的自动化流程。这些技术在编程和设计平台中使用程序步骤来支持非人灵长类的定制植入物设计。然后可以使用三维 (3D) 打印的真人大小的解剖模型来确认每个组件的有效性。

Abstract

本文介绍了一种为非人灵长类动物 (NHP) 神经外科计划量身定制的磁共振成像 (MRI) 3D 大脑和颅骨建模的内部方法。这种基于计算软件的自动化技术提供了一种从 MRI 文件中提取大脑和颅骨特征的有效方法,而不是使用成像软件的传统手动提取技术。此外,该手术提供了一种将大脑和开颅颅骨可视化的方法,以实现直观的虚拟手术计划。与过去的工作相比,这大大减少了时间和资源,而过去的工作依赖于迭代3D打印。颅骨建模过程会创建一个足迹,该足迹被导出到建模软件中,以设计用于手术植入的定制颅室和头柱。定制的外科植入物可最大限度地减少植入物和颅骨之间的间隙,这些间隙可能会引起并发症,包括感染或稳定性下降。通过实施这些术前步骤,可以减少手术和实验并发症。这些技术可以适用于其他手术过程,为研究人员和潜在的神经外科医生提供更有效的实验计划。

Introduction

非人灵长类动物 (NHP) 是转化医学研究的宝贵模型,因为它们在进化和行为上与人类相似。非人灵长类在神经工程临床前研究中变得尤为重要,因为它们的大脑是神经功能和功能障碍的高度相关模型1,2,3,4,5,6,7,8.一些强大的脑刺激和记录技术,如光遗传学、钙成像等,最好通过颅窗直接进入大脑9,10,11,12,13,14,15,16,17,18,19,20,21,22,23.在非人灵长类中,颅窗通常通过腔室和人工硬脑膜来实现,以保护大脑并支持长期实验8,10,12,17,18,24,25,26,27.同样,在实验过程中,头柱通常伴随着腔室以稳定和对齐头部14,15,25,26,28,29,30.这些成分的有效性很大程度上取决于它们与颅骨的配合程度。更贴合颅骨可降低感染、骨坏死和植入物不稳定的可能性,从而促进骨整合和颅骨健康31.传统的设计方法,例如在手术过程中手动弯曲头柱25,29 通过将圆拟合到磁共振 (MR) 扫描的冠状和矢状切片来估计颅骨曲率9,12 由于不精确,可能会引入并发症。即使是最精确的,也会在植入物和颅骨之间产生 1-2 毫米的间隙,为肉芽组织积累提供空间29.这些间隙还增加了在手术中放置螺钉的困难9,影响植入物的稳定性。最近开发了定制的植入物,以改善骨整合和植入物寿命9,29,30,32.由于对计算模型的依赖,定制植入物设计的进步也带来了额外的成本。最准确的方法需要复杂的设备,例如计算机断层扫描 (CT) 机器以及 MR 成像 (MRI) 机器30,32,33 甚至还有用于开发植入物原型的计算机数控 (CNC) 铣床25,29,32,34.对于需要定制植入物(如颅室和头柱)的实验室来说,同时获得 MRI 和 CT,特别是用于非人灵长类,可能并不可行。

因此,社区需要廉价、准确和非侵入性的神经外科和实验计划技术,以促进植入物的使用前设计和验证。本文描述了一种从 MR 数据生成虚拟 3D 大脑和颅骨表示的方法,用于开颅手术位置规划和设计适合颅骨的定制颅室和头柱。这种简化的程序提供了一个标准化的设计,可以有益于实验结果和研究动物的福利。此建模只需要 MRI,因为 MRI 中描绘了骨骼和软组织。与使用CNC铣床不同,即使需要多次迭代,也可以以低廉的价格进行3D打印模型。这也允许最终设计在生物相容性金属(如钛)中进行3D打印,以便植入。此外,我们还描述了人工硬脑膜的制造,该硬脑膜在植入时放置在颅腔内。这些组件可以通过将所有部件安装到真人大小的头骨和大脑3D打印模型上来进行手术前验证。

Protocol

所有涉及动物的程序均由华盛顿大学动物护理和使用委员会批准。本研究共使用了四只成年雄性恒河猴(Macaca mulatta)。采集MRI时,猴H7岁,猴L6岁,猴C8.5岁,猴B5.5岁。猴子 H 和 L 在 9 岁时被植入了定制的慢性腔室。 1.颅骨和脑分离(图1) 使用 3T MRI 机器获取颅骨和大脑的 T1 快速磁化制备梯度回波 (MPRAGE) 文件。MRI 采集<sup …

Representative Results

这些组件之前使用MRI可视化和3D打印解剖模型的组合进行了验证。通过将自动开颅手术可视化与 3D 打印开颅手术和开颅手术位置的 MRI 进行比较,很明显,虚拟开颅手术表示准确地反映了可以通过指定开颅手术位置访问的大脑区域(图 2A-F)。此外,通过将虚拟表示与植入手术的现有开颅手术进行比较,进一步评估了自动开?…

Discussion

本文概述了一种简单而精确的神经外科计划方法,该方法不仅有利于开发用于 NHP 颅窗植入的组件,而且可转移到 NHP 神经科学研究的其他领域 13,15,25。与目前其他非人灵长类植入物规划和设计方法相比 25,29,30,该程序有可能被更多的神经科学实验室采用,因为它简单且经济。</su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢 Toni Haun、Keith Vogel 和 Shawn Fisher 的技术帮助和支持。这项工作得到了华盛顿大学玛丽盖茨基金会(RI),美国国立卫生研究院NIH 5R01NS116464(T.B.,A.Y.),NIH R01 NS119395(D.J.G.,A.Y),华盛顿国家灵长类动物研究中心(WaNPRC,NIH P51 OD010425,U42 OD011123),神经技术中心(EEC-1028725,Z.A.,D.J.G.)和威尔神经中心(ZI)的支持。

Materials

3D Printing Software (Simplify 3D) (Paid) Simplify3D Version 4.1 Used for 3D printing using MakerGear printer
C-Clamp Bessey CM22 Used for artificial dura fabrication, 2-1/2 Inch Capacity, 1-3/8 Inch Throat
Formlabs Form 3+ 3D Printer Formlabs Form 3+ Used for precise 3D printing
MakerGear M2 3D Printer MakerGear M2 revG Used for 3D printing implant prototypes
MATLAB (Paid) MathWorks R2021b Used for brain and skull isolation, virtual craniotomy visualization and skull STL reduction
Phillips Acheiva MRI System Philips 4522 991 19391 Used for non-human primate imaging
Photopolymer Resin Formlabs FLGPGR04 1L, Grey, used for precise 3D prints with Formlabs printer 
PreForm Print Preparation Software Formlabs Version 2.17.0 Used for 3D printing with Formlabs printer 
Printing Filament (PLA) MatterHackers 88331 PLA 1.75 mm White. Used for 3D printing with MakerGear printer
Silicone CAT-1300 Shin-Etsu Used for artificial dura fabrication
Silicone KE1300-T Shin-Etsu Used for artificial dura fabrication
SolidWorks (Paid) Dassault Systems 2020 Used for chamber and headpost design
Syn.Flex-S Multicoil Philips 45221318123 Used for non-human primate imaging

References

  1. Mitchell, A. S., et al. Continued need for nonhuman primate neuroscience research. Current Biology. 28 (20), R1186-R1187 (2018).
  2. Stanis, N., Khateeb, K., Zhou, J., Wang, R. K., Yazdan-Shahmorad, A. Protocol to study ischemic stroke by photothrombotic lesioning in the cortex of nonhuman primates. STAR Protocols. 4 (3), 102496 (2023).
  3. Tremblay, S., et al. An open resource for nonhuman primate optogenetics. Neuron. 108 (6), 1075-1090 (2020).
  4. Zhou, J., et al. Neuroprotective effects of electrical stimulation following ischemic stroke in nonhuman primates. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2022, 3085-3088 (2022).
  5. Yao, Z., Yazdan-Shahmorad, A. A quantitative model for estimating the scale of photochemically induced ischemic stroke. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018, 2744-2747 (2018).
  6. Yazdan-Shahmorad, A., Silversmith, D. B., Kharazia, V., Sabes, P. N. Targeted cortical reorganization using optogenetics in nonhuman primates. eLife. 7, e31034 (2018).
  7. Macknik, S. L., et al. Advanced circuit and cellular imaging methods in nonhuman primates. The Journal of Neuroscience. 39 (42), 8267-8274 (2019).
  8. Griggs, D. J., Belloir, T., Yazdan-Shahmorad, A. Large-scale neural interfaces for optogenetic actuators and sensors in non-human primates. SPIE BiOS. , (2021).
  9. Yazdan-Shahmorad, A., et al. A Large-scale interface for optogenetic stimulation and recording in nonhuman primates. Neuron. 89 (5), 927-939 (2016).
  10. Ruiz, O., et al. Optogenetics through windows on the brain in the nonhuman primate. Journal of Neurophysiology. 110 (6), 1455-1467 (2013).
  11. Griggs, D. J., Khateeb, K., Philips, S., Chan, J. W., Ojemann, W., Yazdan-Shahmorad, A. Optimized large-scale optogenetic interface for nonhuman primates. SPIE BiOS. , (2019).
  12. Yazdan-Shahmorad, A., Diaz-Botia, C., Hanson, T., Ledochowitsch, P., Maharabiz, M. M., Sabes, P. N. Demonstration of a setup for chronic optogenetic stimulation and recording across cortical areas in non-human primates. SPIE BiOS. , (2015).
  13. Bollimunta, A., et al. Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque. Cell Reports. 35 (11), 109239 (2021).
  14. Hacking, S. A., et al. Surface roughness enhances the osseointegration of titanium headposts in nonhuman primates. Journal of Neuroscience Methods. 211 (2), 237-244 (2012).
  15. Romero, M. C., Davare, M., Armendariz, M., Janssen, P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nature Communications. 10 (1), 2642 (2019).
  16. Khateeb, K., et al. A versatile toolbox for studying cortical physiology in primates. Cell Reports Methods. 2 (3), 100183 (2022).
  17. Griggs, D. J., Khateeb, K., Zhou, J., Liu, T., Wang, R., Yazdan-Shahmorad, A. Multi-modal artificial dura for simultaneous large-scale optical access and large-scale electrophysiology in nonhuman primate cortex. Journal of Neural Engineering. 18 (5), 055006 (2021).
  18. Belloir, T., et al. Large-scale multimodal surface neural interfaces for primates. iScience. 26 (1), 105866 (2023).
  19. Khateeb, K., et al. A practical method for creating targeted focal ischemic stroke in the cortex of nonhuman primates. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). , 3515-3518 (2019).
  20. Griggs, D., Belloir, T., Zhou, J., Yazdan-Shahmorad, A. Convection Enhanced Delivery of Viral Vectors. Vectorology for Optogenetics and Chemogenetics. , (2023).
  21. Khateeb, K., Griggs, D. J., Sabes, P. N., Yazdan-Shahmorad, A. Convection enhanced delivery of optogenetic adeno-associated viral vector to the cortex of Rhesus Macaque under guidance of online MRI images. Journal of Visualized Experiments. (147), e59232 (2019).
  22. Yazdan-Shahmorad, A., et al. Widespread optogenetic expression in macaque cortex obtained with MR-guided, convection enhanced delivery (CED) of AAV vector to the thalamus. Journal of Neuroscience Methods. 293, 347-358 (2018).
  23. Griggs, D. J., et al. Improving the efficacy and accessibility of intracranial viral vector delivery in nonhuman primates. Pharmaceutics. 14 (7), 1435 (2022).
  24. Chen, L. M., Heider, B., Williams, G. V., Healy, F. L., Ramsden, B. M., Roe, A. W. A chamber and artificial dura method for long-term optical imaging in the monkey. Journal of Neuroscience Methods. 113 (1), 41-49 (2002).
  25. Adams, D. L., Economides, J. R., Jocson, C. M., Horton, J. C. A Biocompatible titanium headpost for stabilizing behaving monkeys. Journal of Neurophysiology. 98 (2), 993-1001 (2007).
  26. Bloch, J., Greaves-Tunnell, A., Shea-Brown, E., Harchaoui, Z., Shojaie, A., Yazdan-Shahmorad, A. Network structure mediates functional reorganization induced by optogenetic stimulation of nonhuman primate sensorimotor cortex. iScience. 25 (5), 104285 (2022).
  27. Bloch, J. A., Khateeb, K., Silversmith, D. B., O’Doherty, J. E., Sabes, P. N., Yazdan-Shahmorad, A. Cortical stimulation induces network-wide coherence change in nonhuman primate somatosensory cortex. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). , 6446-6449 (2019).
  28. Vnek, N., Ramsden, B. M., Hung, C. P., Goldman-Rakic, P. S., Roe, A. W. Optical imaging of functional domains in the cortex of the awake and behaving monkey. Proceedings of the National Academy of Sciences. 96 (7), 4057-4060 (1999).
  29. Psarou, E., et al. Modular, cement-free, customized headpost and connector-chamber implants for macaques. Journal of Neuroscience Methods. 393, 109899 (2023).
  30. Chen, X., Possel, J. K., Wacongne, C., van Ham, A. F., Klink, P. C., Roelfsema, P. R. 3D printing and modelling of customized implants and surgical guides for nonhuman primates. Journal of Neuroscience Methods. 286, 38-55 (2017).
  31. Prescott, M. J., Poirier, C. The role of MRI in applying the 3Rs to nonhuman primate neuroscience. NeuroImage. 225, 117521 (2021).
  32. Basso, M. A., et al. Using non-invasive neuroimaging to enhance the care, well-being and experimental outcomes of laboratory nonhuman primates (monkeys). NeuroImage. 228, 117667 (2021).
  33. Ahmed, Z., Agha, N., Trunk, A., Berger, M., Gail, A. Universal guide for skull extraction and custom-fitting of implants to continuous and discontinuous skulls. eNeuro. 9 (3), (2022).
  34. Blonde, J. D., et al. Customizable cap implants for neurophysiological experimentation. Journal of Neuroscience Methods. 304, 103-117 (2018).
  35. Ojemann, W. K. S., et al. A MRI-based toolbox for neurosurgical planning in nonhuman primates. Journal of Visualized Experiments. (161), e61098 (2020).
  36. Make STL of 3D array (Optimal for 3D printing). MathWorks Available from: https://www.mathworks.com/matlabcentral/fileexchange/68794-make-stl-of-3d-array-optimal-for-3d-printing (2018)
  37. . stlwrite – Write binary or ascii STL file Available from: https://www.mathworks.com/matlabcentral/fileexchange/36770-stlwrite-write-binary-or-ascii-stl-file (2023)
  38. Michikawa, T., Suzuki, H., Moriguchi, M., Ogihara, N., Kondo, O., Kobayashi, Y. Automatic extraction of endocranial surfaces from CT images of crania. PLoS One. 12 (4), 0168516 (2017).
  39. Overton, J. A., Cooke, D. F., Goldring, A. B., Lucero, S. A., Weatherford, C., Recanzone, G. H. Improved methods for acrylic-free implants in nonhuman primates for neuroscience research. Journal of Neurophysiology. 118 (6), 3252-3270 (2017).
  40. Ortiz-Rios, M., et al. Improved methods for MRI-compatible implants in nonhuman primates. Journal of Neuroscience Methods. 308, 377-389 (2018).
check_url/kr/66167?article_type=t

Play Video

Cite This Article
Iritani, R., Belloir, T., Griggs, D. J., Ip, Z., Anderson, Z., Yazdan-Shahmorad, A. A Neural Implant Design Toolbox for Nonhuman Primates. J. Vis. Exp. (204), e66167, doi:10.3791/66167 (2024).

View Video